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Abstract

Analysis and Design of Wideband Matched Feeds for Reflector Antennas

The o�set single reflector antenna enables simple, high e�ciency, high gain systems,
but su�ers from high cross polarization. The cross polarization can be reduced by
matched feeds, but these su�er from being narrowband. In this thesis, insights on
the reasons for the inherent bandwidth limitation of matched feeds are presented and
methods to overcome it are proposed and demonstrated.

A thorough account of the working principles of conventional matched feeds is first
presented, including an alternative, e�ective method for determining the required
waveguide modes and their excitations. In this process it is discovered that TE

01

and TM
01

modes can be used in matched feeds instead of the TE
21

modes reported
in the literature thus far. A matched feed design using TM

01

is presented as a
demonstration.

A design procedure for conventional matched feeds is proposed. The procedure
involves use of optimization in several stages of the design including direct far-field
optimization. With an axially corrugated horn, a 7 dB improvement of cross polar-
ization is achieved across a 13 % bandwidth for dual polarizations.

By surrounding a circular waveguide with a coaxial one, the modal phase disper-
sion which arises in conventional matched feeds, can be eliminated. This property is
used to present a design method for a new type of mode launcher combining tech-
niques from directional coupler theory and analytical mode coupling models. Designs
featuring excellent performance over a 30 % bandwidth for both polarizations are
presented. A dual-polarized matched feed using this kind of mode launcher is demon-
strated in a subset of the band.

It is shown that elimination of phase dispersion between modes can also be
achieved using impedance surface waveguides. Horns made of a specific range of
anisotropic impedance surfaces provide far superior conditions for wideband matched
feed design than smooth or corrugated metal horns.

With the analysis framework and the innovations presented in this thesis, matched
feeds are several steps closer to becoming the standard for o�set reflector antennas.





Resumé (in Danish)

Analyse og design af bredbåndede, krydspolarisationskompenserende fødehorn til
reflektorantenner

Forskudte (o�set) enkeltreflektorantenner er simple og gør det muligt at opnå høj
e�ektivitet og direktivitet, men de lider under forhøjet krydspolarisation. Krydspo-
larisationen kan reduceres med krydspolarisationskompenserende fødehorn (matched
feeds), men disse har en begrænset båndbredde. Denne afhandling præsenterer indb-
lik i årsagerne til båndbreddebegrænsningen og demonstrerer metoder til at afhjælpe
den.

Først præsenteres en grundig gennemgang af virkemåden for krydspolarisation-
skompenserende fødehorn inklusiv en alternativ, e�ektiv metode til bestemme de
nødvendige modes i bølgelederen og deres excitationer. Det opdages i denne proces
at bølgeledermodes TE

01

og TM
01

kan bruges til krydspolarisationskompenserende
fødehorn i stedet for TE

21

som hidtil er rapporteret i litteraturen. Som demonstration
af dette, præsenteres et design som kun bruger TM

01

til krydspolarisationskompenser-
ing.

En designmetode til konventionelle krydspolarisationskompenserende fødehorn
præsenteres. Proceduren involverer optimering i flere trin af designet, inklusive di-
rekte optimering i fjernfeltet. Med et aksialt korrugeret horn opnås en 7 dB under-
trykkelse af krydspolarisation over en båndbredde på 13 % i begge polarisationer.

Ved at omslutte en cirkulær bølgeleder med en koaksial kan fase-dispersionen
som opstår i konventionelle krydspolarisationskompenserende fødehorn elimineres.
Denne egenskab bruges til at præsentere en designmetode til en ny type mode-
transformator, som kombinerer teknikker fra bølgelederkobler-teorien og analytiske
modeller for kobling mellem bølgeledermodes. Der præsenteres prototyper som har
fremragende ydeevne i en 30 % båndbredde for begge polarisationer. Et dobbelt-
polariseret krydspolarisationskompenserende fødehorn, som bruger en sådan mode-
transformator, præsenteres.

Det vises endvidere, at fase-dispersionen mellem modes også kan elimineres ved
brug af bølgeledere lavet af impedansoverflader. Horn lavet med nogle specifikke
impedansoverflader giver langt overlegne forhold for design af bredbåndede krydspo-
larisationskompenserende fødehorn, sammenlignet med perfekt ledende horn med glat
overflade eller korrugerede horn.

Med analysemetoderne og innovationerne præsenteret i denne afhandling er kryd-
spolarisationskompenserende fødehorn flere skridt tættere på at blive standarden for
forskudte reflektorantenner.
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CHAPTER 1
Introduction

The reflector antenna has a long heritage, dating at least back to Newton’s, Gregory’s,
and Cassegrain’s first reflecting telescopes in the 17th century. To this day, reflector
antennas are the preferred choice for high gain applications, especially where a wide
bandwidth is required. This makes them widespread in the space industry where
signals have to be broadcast over large distances at demanding data rates [1]. As well
as in the fields of radio and radar astronomy which use many frequency bands and
require a high sensitivity [2].

Reflector antennas can be characterized by the number of reflecting surfaces that
makes up the antenna. Both single and double reflector systems are very common.
Systems with more than two reflectors also exist, e.g. in beam waveguide fed antennas.
Another important characteristic of a reflector antenna system is if it is symmetric
or o�set. In a symmetric antenna system, the antenna structure is rotationally sym-
metric around the axis of radiation, which is not the case in an o�set system. The
motivation for o�setting the elements of the antenna system is to thereby avoid that
the elements are blocking each other’s radiation.

The reduced blockage in the o�set reflector antenna system is a compelling ad-
vantage for several reasons: among others, enhanced e�ciency, lower side-lobe levels,
and reduced coupling. However, from the o�set geometry, a major drawback arises:
increased cross polarization for linear polarization1 [3]. Cross polarization is an ob-
vious disadvantage in systems where two polarizations are used independently, e.g.
in polarimetric radars and radiometers, and in communication satellites that employ
frequency reuse. Increased cross polarization is a serious problem which translates
directly into disturbance in the signal of the other polarization channel. In dual (or
more) o�set reflector systems, cross polarization may be compensated by letting the
combined reflector system satisfy the Mizuguchi condition [4, 5].

Despite the increased cross polarization, o�set single reflector antennas are still
used extensively due to their other desirable properties, especially within satellite
broadcast and communication. The cross polarization enters into the link budget of
the system engineer and can be somewhat limited by choosing relatively long focal
lengths. There is, however, a limit to how long the focal length can be made in a
practical system, especially on a satellite body. An alternative solution was proposed
by Rudge and Adatia [6] in 1975. It involves radiating cross polarization from the
feed antenna in such a way that it compensates the cross polarization introduced by

1For circular polarization, this translates to a beam squint instead as will be explained in Chap-
ter 2. Unless otherwise stated, cross polarization will refer to linear cross polarization.
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the o�set geometry. The original design method involved matching the aperture field
of the feed to fields of a received plane wave, which gave rise to a commonly used
term matched feeds. The horn field is matched to the received field by introducing
higher order waveguide modes in the horn. The present work is concerned with feed
horns employing this concept.

Despite the apparent attractiveness of getting the advantages of both the sym-
metric and o�set reflectors, only a moderate amount of research on matched feeds
was conducted in the years after the invention, including but not limited to [7–10].
In recent years, the interest in matched feeds has been revived, and feed designs with
circular [11–14], rectangular [15, 16], corrugated [17–21], and other geometries [22,
23] have been presented. Examining the existing literature shows that the primary
challenge of the matched-feed technique is to achieve a decent bandwidth2, which
is essential for the use of this technology in communication applications. This dif-
ficulty stems mainly from two factors: 1) that mode conversion is often based on
near-resonant structures and 2) that the fundamental and higher-order modes have
di�erent cuto� frequencies, resulting in phase dispersion. For the feed to be able to
compensate cross polarization, the higher order mode must be in specific amplitude
and phase relationships with the main radiating modes at the aperture. This condi-
tion is challenging to maintain over a large bandwidth because the modes inside the
horn propagate at di�erent speeds and the di�erence in speed varies with frequency.
On top of this di�culty, the amplitude and phase responses of the mode conversion
components change rapidly with frequency when they are near resonance.

The working bandwidth of a matched feed may be defined as the frequency range
within which it reduces the cross polarization by a certain amount, say by 10 dB
relative to the case of a perfectly co-polarized, non-matched feed. Watson, Rudge,
and Adatia [8] were first to introduce this bandwidth measure, and they achieved
a 10 dB reduction over a 4 % fractional bandwidth with a dual polarized matched
feed. Most other references in the literature feature even narrower bandwidth, or the
obtained bandwidth is not provided at all. In a recent work, Dey et al. [19, 24] have
presented designs with a wider bandwidth. They report a 10 dB cross polarization
reduction over a 8 % bandwidth for a single polarization using a new kind of mode
launching concept followed by a corrugated horn.

Good cross polarization discrimination is often motivated by frequency reuse: if
the two polarizations do not interfere, two distinct signals can be transmitted and
received at the same frequency, thus doubling the data rate. Dual polarization may
also help to reduce interference between closely spaced beams in multi-beam satellite
systems. If both of the data channels are to be available in a system which has only
one antenna, the antenna must be able to operate in dual polarizations. Satellite
earth terminals are often required to transmit and receive in opposite polarizations,
with polarizations depending on coverage area and specific satellite [25–27]. Hence,
a feed for a reflector antenna will likely be required to work in two polarizations,
however, the literature on matched feeds deals almost exclusively with single polarized
designs. The matched feed e�ect for two simultaneous polarizations is possible as
demonstrated already in 1978 [8]. To my knowledge, there are in fact only three
additional published examples of matched feeds which work in dual polarization and
these are a very sparsely described corrugated horn [28] and two patents which are
almost identical [20, 21]. In the present work all designs are dual polarized3.

Drastically reducing the cross polarization of o�set reflector systems without com-
promising other design goals or significantly increasing the size or cost of the feed sys-

2“Decent” is a bit vague, but it is hard to be more concrete without locking onto a specific
application.

3Except the demonstrator TM01 design in Appendix A
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tem would be immensely valuable to the satellite industry — for both the space and
earth segments. Published works on the matched-feed concept have not yet obtained
satisfactory results. Reducing cross polarization for a narrow frequency band has
been proven many times over, but doing so in dual polarizations across a bandwidth
suitable for high data rate communication, is still to be shown and therein lies the
justification of this thesis.

The purpose of this study is to investigate the inherent bandwidth limitation
of matched-feed antennas and develop methods to overcome it. A framework of
simple analytical and semi-analytical models is set up in order to gain insight into
the physical mechanisms. This knowledge will form a basis for improving existing
design methods. By properly understanding the workings of the mode launchers,
it is possible to design more advanced kinds which work in both polarizations and
suppress the generation of unwanted modes at the same time.

Eliminating the phase dispersion between waveguide modes is key to achieving
a wide bandwidth in matched feed antennas. Two promising methods for doing
so have been investigated: circular to coaxial waveguide coupling and impedance
surface waveguides. For the former, a comprehensive design procedure for a wideband
mode launcher is developed. Extensive use of numerical optimization is used on the
analytical models as well as on full wave simulations of prospective designs. The
analysis and the designs presented are based on horn antennas of circular aperture,
but the theory and methods may be applied to any waveguide shape.

Reading Guide

Chapter 2 is an introduction to reflector antennas and their cross polarization as well
as a brief description of the matched feed concept. Chapter 3 goes on to definitively
account for the modal requirements of a matched feed before Chapter 4 gives physical
insight into the way these modes may be generated. Chapter 5 presents a novel way
in which to achieve broadband mode conversion using coupled circular and coaxial
waveguides as well as a matched feed design using this. Finally, an investigation of
horns with anisotropic impedance walls as an alternative way to solve the matched
feed bandwidth problem is presented in Chapter 6.

All field and current quantities in this thesis are given in phasor notation with
the time factor, ejÊt, suppressed. Unless otherwise stated, results presented here are
related to systems where the reflector is o�set in the y-direction.





CHAPTER 2
Reflector Antenna Cross

Polarization and Matched
Feeds

This chapter will set the scene of the core problem: cross polarization in reflector
antennas. There are many ways to explain or derive polarization properties of sym-
metric and o�set single reflector antennas. The following is based on examining the
reflector aperture field calculated by Geometrical Optics. This method is basically
the simplest way of analyzing a reflector, but it nicely illustrates the cross polarization
arising from the o�set system. More accurate techniques will be used whenever the
reflector far fields need to be evaluated, but introducing them here would only serve
to clutter the conclusions.

After the problem has been concisely described, the matched feed technique will be
introduced. The basic workings of the invention will be explained and some remarks
on the bandwidth problem will be given. Finally, there will be a comprehensive
literature survey of the research within the field.

2.1 The Focusing Properties of Ellipsoids and Paraboloids

Ellipses as the one shown in Figure 2.1(a) have two associated foci (F
1

and F
2

).
An interesting property of the elliptical curve is that rays originating from one focus
will pass through the other focus after just one reflection (assuming angle of incidence
equal to angle of reflection). An ellipse can therefore move radiation from one point to
another. Often it is of interest to move radiation from a localized source to somewhere
far away in a specific direction. If we place one of the foci of the ellipse at infinity in
a certain direction, a parabola is formed. Radiation from the focus of a parabola will
thus be reflected in parallel rays as illustrated in Figure 2.1(b). Conversely, all rays
entering the parabola from this direction will reflect into the focus.

If the ellipse or parabola is rotated around the axis containing the two foci, the
focusing properties are retained for the entire resulting surface. These surfaces are
called ellipsoids1 and paraboloids, respectively.

Because of their focusing property, paraboloids are used in many technologies such
as search lights, optical telescopes, and microwave antennas. The simple ray-optical

1More precisely, they are prolate spheroids, since not all ellipsoids have two point foci.
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F
1 F

2

(a) Ellipse

F
1

F
2

inf

(b) Parabola

Figure 2.1: Focusing properties of ellipses and parabolas. The
parabola is a special case of the ellipse, where one of the foci is in in-
finity, and it is therefore well suited for sending radio signals far away.
Red arrows indicate normal vectors.

reflection assumption is only an approximation at microwave frequencies, but even
still, paraboloids are the workhorses of high gain microwave antennas. Ellipsoidal,
as well as hyperboloidal surfaces, are frequently used as intermediate subreflectors
in antenna systems, but this work will “focus” on antennas with a single paraboloid
reflector.

2.2 Cross Polarization of the Symmetric Reflector Antenna

A symmetric reflector antenna illuminated by a purely co-polarized feed will radiate
very little cross polarization. This antenna consists of a paraboloidal reflecting surface
and a feed antenna in the focus, pointed towards the vertex (tip) of the paraboloid
as shown in Figure 2.2.

Figure 2.2: Simplest rotationally symmetric reflector antenna system:
paraboloidal reflector and feed pointed toward vertex. A real antenna
would require support structures for the feed.

The reason for this very low cross polarization may be realized by analyzing the
system using just Geometrical Optics (GO), which is an approximation valid in the
high frequency limit. Electromagnetic power is assumed to be TEM waves propagat-
ing in ray tubes, or bundles, and reflect of surfaces like simple mirror reflection, i.e.
the reflected ray makes the same angle with the surface normal as the incident ray,
and all three vectors are in the same plane. The GO formula for the reflected field
may be derive assuming an infinite PEC plane at the reflection point, and is given



2.3 Cross Polarization of the O�set Reflector Antenna 7

Figure 2.3: An o�set reflector antenna as constructed from a parent
paraboloid surface.

by:

E
r

= 2(n̂ · E
i

)n̂ ≠ E
i

(2.1)

in which n̂ is the surface normal, and E
i

and E
r

are the incident and reflected
fields, respectively. The formula also provides information on the polarization of the
reflected wave.

We may use Equation (2.1) to find the aperture field of the reflector in Figure 2.2.
It turns out that if the feed has no cross polarization by Ludwig’s 3rd definition [29],
the aperture field will be parallel everywhere. Indeed, this was one of the arguments
put forth by Ludwig, in favor of using his 3rd definition of cross polarization for
radiated fields.

As we have already assumed TEM waves, the H-field will also be parallel in the
aperture and perpendicular to the electric field. More importantly, the plane wave
relation between the two ensures that the equivalent electric and magnetic currents
represent Huygens sources everywhere in the aperture. A single Huygens source is
perfectly co-polarized by Ludwig’s 3rd definition, and by linearity, so is a sheet of
parallel Huygens sources. Therefore, a symmetrical reflector will not introduce any
cross polarization — in the GO assumption — only propagate cross polarization
already present in the feed field.

In a more sophisticated model, z-directed currents and edge di�racted fields will
contribute a small amount of cross polarization. However, even when using Physical
Optics (PO) with Physical Theory of Di�raction (PTD) or Integral Equation solvers
of GRASP [30], the cross polarization of a typical reflected field (with no strut or feed
blockage) is in the order of 50 dB to 60 dB below peak directivity.

2.3 Cross Polarization of the O�set Reflector Antenna

An undesirable e�ect in a practical symmetrical reflector system is that the feed —
or a subreflector — and the structure suspending it will block the field of view of
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the reflected rays. Feed and strut blockage deteriorates e�ciency, sidelobe levels, and
return loss. Also, it is more complicated to predict the exact performance of the
antenna system, when the feed, reflector, and struts couple strongly. Feed blockage
can be avoided by cutting out an section of the parent paraboloid and tilting the feed
toward this section. The configuration — an o�set parabolic reflector antenna — is
illustrated in Figure 2.3.

O�set parabolic reflectors also have one major drawback: high cross-polarization
in lobes that are near the maximum radiation direction of the antenna. This is true
even when the feed is ideal and has no cross polarization of its own. One may think
that cross polarization arises from the asymmetry of the reflector surface itself, but it
is in fact introduced when the feed is tilted away from the vertex towards the cutout
section of the paraboloid. If the feed had been unrotated, the observations about
parallel aperture field which we made for the symmetric antenna would still hold.

Consider a feed which is strictly co-polarized by Ludwig’s 3rd definition illumi-
nating a paraboloid reflector from the focus at an angle of ◊

f

as in Figure 2.3. The
aperture co and cross polarized components (x̂ and ŷ) were calculated by Chu and
Turrin [3]. The formulas are reproduced here (but for a y-o�set reflector instead of
x-o�set as in [3]):

E
co

= F (◊Õ, „Õ)
tr

[sin ◊Õ sin ◊
f

sin „Õ

≠ cos2 „Õ (cos ◊
f

+ cos ◊Õ) ≠ sin2 „Õ (1 + cos ◊
f

cos ◊Õ)
$

(2.2a)

E
cr

= F (◊Õ, „Õ)
tr

cos „Õ [sin „Õ (1 ≠ cos ◊
f

) (1 ≠ cos ◊Õ) ≠ sin ◊Õ sin ◊
f

] (2.2b)

where primes indicate coordinates that are relative to the (tilted) feed. F is the feed
amplitude pattern, r is the distance from the focus to the point on the reflector, and

t = 1 + cos ◊
f

cos ◊Õ ≠ sin ◊
f

sin ◊Õ sin „Õ.

The feed may be either horizontally polarized (E
co

= E
x

and E
cr

= E
y

) or vertically
polarized (E

co

= E
y

and E
cr

= ≠E
x

). The cross polarization component is iden-
tical in both cases. It may also be observed that, by virtue of cos „Õ, the aperture
cross polarization is of opposite signs on either side of the symmetry plane. And
as expected, if ◊

f

= 0, the cross polarization vanishes everywhere in the aperture,
symmetric reflector or not.

So why tilt the feed if this causes cross polarization? Much of the radiation from an
untilted feed would shoot past the reflector, causing very poor spillover e�ciency, but
also increased edge illumination and poor aperture e�ciency. In a practical system,
the feed will have to be pointed upwards to some degree, thus inducing the cross
polarization. The concept has been illustrated in Figure 2.4 by plotting the aperture
fields due to Equations (2.2) of three configurations: (a) a symmetrical antenna, (b)
an o�set antenna with no feed tilt, and (c) an o�set antenna with a tilted feed. Electric
field lines of the reflector aperture are shown for horizontally and vertically polarized
feeds. It is evident, that aperture fields of the o�set reflector with an untilted feed
in Figure 2.4(b) are parallel, though the utilization of the aperture area is very poor.
For the tilted the feed in Figure 2.4(c), the equivalent currents in the aperture are
still Huygens sources, but as they are not parallel, there will be cross polarization in
the far field.

An alternative perspective on the subject is given by Jacobsen [7]: the cross po-
larization of an o�set reflector system may be regarded as the cross polarization of
the feed when the polarization of the tilted feed is referenced to an untilted coordi-
nate system. Since the polarization vectors of Ludwig’s 3rd definition change with
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direction, even a perfectly polarized feed will generate cross polarization when tilted.
In this way, the generated cross polarization is always just that of the feed, as with
the symmetrical reflector system.

(a)

(b)

(c)

Figure 2.4: Symmetric and o�set reflectors illuminated by Gaussian
beam feeds with no cross polarization. Horizontally and vertically po-
larized reflector aperture fields are plotted for symmetric (a), o�set with
no feed tilt (b), and o�set with feed tilt (c). The reflector f/D = 0.5 in
all three cases and the feed tilt is 62¶ in (c). It is evident that the cross
polarization arises from the feed tilt.

In the plane of symmetry, vertical in Figure 2.4(c), the cross polarization cancels
out in the far field, but in other planes, the curved aperture field lines result in cross
polarization. The cross polarization is most severe in the plane perpendicular to
the symmetry plane, denoted here as the asymmetry plane. As an example of cross
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polarization in the far field, the antenna treated in [3] will be recalculated here. The
antenna is an o�set reflector system with f/D = 0.5. Additional parameters are
summarized in Table 2.1. Figure 2.5 shows the antenna far-field cuts calculated with
GRASP in the asymmetry and diagonal plane. The maximum cross-polar radiation
is high: only 18.5 dB below the main beam peak. Note that the cross polarization
lobes are in phase quadrature with the co-polar radiation and opposite phase on each
side of the symmetry plane. The phase relationships between co- and cross-polar
radiation will be detailed in the following section.

Symbol Value

Frequency - 18.5 GHz
Focal length f 6 in
Aperture diameter D 12 in
Clearance DÕ 0 in
f over D f/D 0.5
Feed tilt ◊

f

53¶

Cone tilt ◊
0

45¶

Subtended half angle ◊ú 45¶ F

D

f

DÕ

◊

ú

◊

ú

◊f

◊

0

Table 2.1: Parameters of the antenna measured in [3].
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(a) Polarized in symmetry plane
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(b) Polarized in asymmetry plane

Figure 2.5: Radiation pattern of o�set reflector antenna defined in
Table 2.1 [3] illuminated by a purely co-polarized Gaussian beam feed.
Cuts in the asymmetry and diagonal planes are shown, there is no
cross polarization in the symmetry plane. Cross polarization patterns
are drawn with dashed lines. Reflector scattering is calculated with
PO+PTD in GRASP.

2.3.1 Phase of Cross Polarization
There is some confusion in the literature as to the phase relationship between co- and
cross-polar components in an o�set reflector system and especially in a matched feed
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l

e ≠
j

k

l

1

e +

j

k

l

l

Contribution from outer sources if
in-phase:

e+jkl + e≠jkl = 2 cos kl

or if in anti-phase:

e+jkl ≠ e≠jkl = 2j sin kl

Figure 2.6: Radiation from displaced sources. If the outer elements
are in phase with the middle element, their contribution will be in phase
with the middle one’s and maximum at boresight. If one of the outer
elements is in phase with the middle element and the other in anti-
phase, their contribution will be in phase quadrature with the middle
one’s and maximum when kl = fi

2

.

system. There is a lot of mention of phase quadrature and/or 90¶ phase o�sets. The
root of it all is in fact very simple, though one has to be a little careful to specify
where we are examining the fields. From Figure 2.5 it is evident that the far-field
cross-polar lobes are ±90¶ out of phase with the co-polar main lobe — plus or minus
on either side of the symmetry plane.

The cross polarization arising from the feed tilt is not in phase quadrature — see
[7, Fig. 5]. On one side of the symmetry plane, it is along (in phase with) and on the
other side opposite (in anti-phase with) the co-polar component. The GO translation
to the reflector aperture plane does not change this — see Figure 2.4. The phase
quadrature of the far field cross-polar lobes arises from the radiation of the equivalent
currents in the aperture. The cross-polar directed sources are displaced on either side
of the symmetry plane and in opposite directions, i.e. they are in anti-phase with
each other. These sources will radiate cross-polar lobes in phase quadrature with
the co-polar sources which are centered in the middle of the aperture. A simplified
example is depicted in Figure 2.6: three sources are horizontally displaced. We let the
middle one radiate co-polar field and the outer ones cross-polar. If one of the outer
sources is in-phase with and the other in anti-phase with the middle source, their total
contribution in the far field will be in phase quadrature with the middle component.
This is exactly the case with the equivalent sources of the o�set reflector aperture
in Figure 2.4(c) resulting in far-fields like the ones in Figure 2.5. In the boresight
direction, the anti-phase displaced sources cancel out, and there is therefore no cross
polarization exactly on axis.

Conversely, in order to compensate the in-phase/anti-phase cross-polar compo-
nents in the reflector aperture, the feed must radiate cross-polar lobes which are not
in phase quadrature with the co-polar part. In order to do so displaced cross-polar
sources in the feed region must be 90¶ and ≠90¶ out of phase with the co-polar part,
respectively.

In summary, o�set reflector antennas exhibit high cross polarization in the far
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field. The cross polarization is in phase quadrature with the co-polar part because
it stems from cross polarization in the reflector aperture which is in-phase (and anti-
phase) with the co-polar component. To compensate it, cross polar components in
the feed aperture must be in phase quadrature with co-polar components.

2.3.2 Beam Squint for Circular Polarization
If the o�set reflector system is circularly polarized, the feed tilt does not induce cross
polarization (axial ratio degradation), but a depointing — squinting — of the main
beam. The squint is in opposite directions for opposite hands of polarization. The
main focus of this thesis is on linear polarization, so the e�ect will only briefly be
explained here. For further reference on the subject see e.g. [3, 31–33].

We may understand the beam-squinting e�ect by inspecting Figure 2.4(c) again.
The field is rotated towards the edges of the aperture: counter-clockwise in the left
and clockwise in the right side. The direction and amount of rotation is the same for
both horizontal and vertical feed polarization, which means that the field lines are still
perpendicular to each other in the entire aperture2. In consequence, the polarization
is still circular, but slightly rotated. The rotation is equivalent to either a delay or
advance in time/phase. The increasing phase delay across the aperture results in a
scanning of the beam in the plane of asymmetry. Inverting the hand of polarization
turns delay into advance and vice-versa, meaning that squinting will be in opposite
directions for opposite hands of circular polarization.

Adatia and Rudge [31] present an approximate formula for the amount of beam
squint as a function of feed tilt angle and electrical focal length:

Â
s

= û⁄ sin ◊
f

4fif
. (2.3)

For the reflector given in Table 2.1, the expected beam squint is

Â
s

= û0.39¶ (2.4)

which fits well with simulated results and the results presented in [3].
According to Equation (2.3) the following can be observed about circular polar-

ization beam squint in o�set reflector systems:

• Higher frequency will cause less beam squint. (But narrower beam.)

• For fixed f/D and ◊
f

, a larger antenna will cause less beam squint.

• For a fixed f , larger D and/or DÕ will cause more beam squint.

2.4 The Matched Feed Concept

As explained in the preceding sections, the cross polarization of o�set reflector an-
tennas arises from the tilted feed. An ideal feed would have a tilted beam, but low
cross polarization referenced to the untilted coordinate system. A theoretical way of
implementing this is to have an array of untilted feeds which are phased such that
the beam is scanned upwards as proposed by Jacobsen [7]. Another way would be
to have a single feed which is not perfectly polarized, but radiates cross polarization
which cancels the cross polarization from the tilt.

2This can also be realized from the fact that the rotation of the feed and the reflection are both
conformal mappings (locally angle-preserving transformations) [5]. In fact, since any combination of
N elliptical/parabolic reflectors can be reduced to an equivalent bilinear conformal transformation,
circular polarization will always be preserved, but possibly squinted.



2.4 The Matched Feed Concept 13

In their 1975 paper Rudge and Adatia [6] propose to generate this desired cross
polarization by exciting higher order modes in the feed. For circular horns, they
propose the use of the TE

21

mode. It is later clarified in [32] that each of the two
degenerate TE

21

modes can be used for two polarization operations of the antenna.
The need for TE

21

modes is determined by observing the focal region field of the
antenna when it is in receiving mode. An analysis of this method and an alternative
method for determining compensating modes are given in Chapter 3.

The di�erent horn sections of an example matched feed are depicted in Figure 2.7.
Since the TE

21

mode has a di�erent angular variation (m = 2) than the fundamen-
tal TE

11

mode, a waveguide component without rotational symmetry is required to
excite it — see Chapter 4 for a detailed analysis. The prototype feed presented in
[6, 34] featured two pins with 90¶ separation inserted near a step in the waveguide
diameter. Following the step, the waveguide is large enough to support propagation
of the TE

21

mode, but not TM
11

. After the next step in diameter, the TM
11

mode
is also supported. The length of the waveguide sections (l

1

and l
2

) can be used to
independently tune the phase the TE

21

and TM
11

modes relative to TE
11

. Given the
correct relationships in the aperture, the TM

11

mode will compensate cross polariza-
tion of the TE

11

mode (Potter horn [35]) and the TE
21

mode will compensate cross
polarization from the feed tilt. This is the basic operating principle of most matched
feeds in the literature.

TE
11 +TE

21 +TM
11

a
1

a
2

a
3

a
o

l
1

l
2

l
flare

Figure 2.7: Topology of the matched feed horn presented by Rudge
and Adatia [6] and most other designs in the literature. Only TE

11

can propagate where the radius is a
1

, TE
21

and TM
11

are excited in
subsequent sections. The inclusions at the a

1

to a
2

step represent the
asymmetric mode launcher.

Another way to realize that the TE
21

modes are suitable for cross polarization
compensation, is by inspecting the modal fields and remembering the discussion in
Section 2.3.1. The modal fields of the TE

11

and TE
21

modes are illustrated in Fig-
ure 2.8. To radiate the required cross polar lobes which are anti-symmetric in the
symmetry plane, we need cross-polar sources which are also anti-symmetric in the
symmetry plane. The two TE

21

modes satisfy this requirement — one for each polar-
ization of the primary field. These regions in the waveguide fields are highlighted in
the figure. In order to cancel the in-phase (and anti-phase) cross-polar components
induced by the feed tilt, the TE

21

modes will have to be in phase quadrature with
the TE

11

mode as discussed in Section 2.3.1.
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x̂

ŷ

(a) Horizontal polarization: TE1
11 and TE2

21

x̂

ŷ

(b) Vertical polarization: TE2
11 and TE1

21

Figure 2.8: Transverse fields of the TE
21

modes needed for matched
feed operation shown together with the corresponding TE

11

mode for
each polarization. The desired regions of cross-polar field are high-
lighted. A y-o�set reflector is assumed. The TM

11

modes are omitted
here.

2.4.1 Beam Squint Compensation with Matched Feeds
With the explanation given in Section 2.3.2, it is straight forward to realize, that if
a matched feed compensates the aperture cross polarization for both horizontal and
vertical inputs, then the beam squint is also eliminated when the feed is excited with
circular polarization. Unfortunately, there is a catch. If both polarizations are not
compensated to the same degree, we introduce a degradation of the axial ratio, which
was otherwise perfect.

In a practical matched feed design, it is unrealistic to maintain the exact same level
of compensation for both polarizations over a wide frequency bandwidth. The feed
presented in [P1] does compensate beam squint when excited by circular polarization,
but also degrades axial ratio.

In reference [36], the authors demonstrate beam squint compensation by use of a
matched feed. The matched feed is single polarized3 and therefore quite severe axial
ratio degradation must be expected, but this is not considered in the paper.

2.5 Bandwidth Limitations of Matched Feeds

It has previously been mentioned that the matched feed concept is challenged with
respect to bandwidth. Indeed the purpose of this work is to clarify and overcome
this challenge. Two main factors limit the bandwidth of matched feed designs in the
literature: modal phase dispersion and resonance e�ects. These topics are touched
upon several times in this thesis and in the attached papers, but shall be briefly
explained now.

3Can be deduced from the pin configuration; higher order modes will not be in correct phase
relationship for dual polarization. See Chapters 3 and 4.
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2.5.1 Modal Phase Dispersion
The relative phase between the fundamental and compensating TE

21

mode is very
important for the proper operation of a matched feed. As previously mentioned and
as shall be detailed further in Chapter 3, the compensating mode must be in phase
quadrature with the fundamental ones. The TE

21

mode should either lag or lead in
phase (plus or minus 90¶) depending on the sign convention of the waveguide mode
fields used. If it is one or the other is not so important for this discussion.

To illustrate the di�culty in maintaining phase quadrature relationship at the
aperture of the horn, dispersion curves for selected waveguide modes are plotted in
Figure 2.9. In it, we can read the phase constant as a function of frequency of the
three principal waveguide modes used in Rudge and Adatia’s matched feed horn [6]
— see again Figure 2.7. The modes have significantly di�erent cuto� wavenumber-
s/frequencies. To be exact: the cuto� frequency of TE

21

is 1.66 times larger than
that of TE

11

. In consequence, the phase constants are di�erent, and the di�erence
changes with frequency.
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Figure 2.9: Dispersion plot of selected modes in a circular waveguide.
k = 2fif

c

is the free space wavenumber. — =


k2 ≠ k2

c

is the propagation
constant of the mode, with k

c

being the smallest wavenumber at which
the mode can propagate. a is the radius of the waveguide.

The relative phase between two modes travelling in a waveguide is the length
travelled times the di�erence in phase constant:

�„ = l (—
1

≠ —
2

) . (2.5)

It is clear from Figure 2.9 that this quantity will change with frequency, since the
distances between the curves change. Herein lies one of the fundamental bandwidth
limitations of matched feeds: the phasing lengths of the horn in Figure 2.7 can only
be tuned for a single frequency.

To limit the phase dispersion e�ect of Equation (2.5), one must either minimize
l, the distance travelled, or stabilize the di�erence in phase constant. For a smooth
walled circular PEC waveguide, the latter can only be accomplished by choosing a
relatively large waveguide. However doing so is seldom very practical.

Equal cuto�s of fundamental and compensating higher order modes is possible if
the modes travel in di�erent waveguides, which will be explored in Chapter 5, or if
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the waveguides are made from certain anisotropic surfaces, which will be investigated
in Chapter 6.

2.5.2 Resonance E�ects
The mode launcher of a matched feed is typically made from one or more inclusions
in the waveguide, e.g. a pin/rod. A certain amount of higher order mode must be
excited by this inclusion and this amount increases with increasing compactness of
the system (see Chapter 3). The desired amount can be obtained by tuning the size
of the inclusions.

Often, the inclusions reach a size close to their resonance in order to generate a
su�cient amount of higher-order mode. This is bad news for the frequency bandwidth
of the matched feed. The magnitude and phase of the currents on the waveguide
inclusion change rapidly with frequency in the range around the resonance. It is well
known from circuit theory that the response looking into e.g. a canonical series RLC
circuit, changes from capacitive to inductive when crossing the resonance frequency.

This large phase and magnitude gradient with respect to frequency adds to the
di�culty of getting a matched feed to work at more than a very narrow frequency
range. Creating conditions which enable us to use many sub-resonance instead of few
near-resonance inclusions is discussed in Chapters 5 and 6.

2.6 Literature Survey of Matched Feeds

The invention of matched feeds, namely that the cross polarization arising in o�set
reflector antennas can be compensated by asymmetrical waveguide modes in the feed,
is attributed to Rudge and Adatia [6]. In their first paper on the subject, they explain
the necessity of an asymmetrical mode by considering the focal plane fields when the
antenna is in receive mode from a distant source at boresight. These focal plane fields
had been derived analytically some years earlier by Bem [37]. Rudge and Adatia
state that this field can be approximately matched by the addition of the TE

21

mode
in a circular feed, the HE

21

in a radially corrugated feed, or the TE
11

mode in a
rectangular feed. Additionally, the inherent cross polarization of the circular TE

11

mode must also be compensated by the TM
11

mode, as proposed by Potter [35]. They
go on to present the practical design of a smooth conical Potter horn with a mode
launcher attached at the throat. The mode launcher is responsible for generating the
asymmetrical TE

21

waveguide mode. The device consists of two pins inserted into
the waveguide at a 90¶ angle from each other. The feed illuminates a reflector with
f/D = 0.8 at 30 GHz. Both calculated and measured patterns are presented, but the
calculation method is not given. In [34], the authors also consider the method applied
to a monopulse radar configuration and simulated results show a successful reduction
in boresight jitter. Boresight jitter reduction is further investigated in [38]. A more
thorough explanation, including the analytical expressions of Bem [37] and how they
relate to the waveguide modes, is given by the authors in [32], which is a review
paper on o�set reflector antennas. Jacobsen [7] also presents an example rectangular
matched feed in his treatment of o�set reflector cross polarization in 1977.

In [8], the technique is extended to dual polarized operation with shorted rectan-
gular waveguide stubs around the circumference of a waveguide acting as the TE

21

mode launcher. The mode launcher is still attached to a Potter-type horn and illu-
minates the same reflector as in [6, 34]. The authors now take up the question of
operation bandwidth and state that this configuration has a theoretically achievable
bandwidth of 5 % and they obtain 4 % in measured results. They define bandwidth as
the band within which the cross-polar discrimination is 10 dB better than a conven-
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tional Potter horn feed. Di�erent authors have used di�erent bandwidth definitions,
but in the following, the given bandwidths will be related to this measure if possible.

The same authors were granted a patent [39] for the invention in 1978 in which
both rectangular, smooth circular, and radially corrugated circular horns are de-
scribed. Each of the horn types have di�erent mode launching mechanisms. The
mechanism in the rectangular horn consists of two slightly di�erent wedge inserts.
The wedge material is not given. The smooth circular horn is identical to the horn
given in [6, 34] with pins as mode launcher. The corrugated horn incorporates the
HE

21

mode generation by letting one of the corrugation rings have a non-circular
shape. Thus, in e�ect, the “pins” are projected onto one of the corrugations. The
authors state that a larger bandwidth is possible with the corrugated feed. Indeed, a
dual polarized corrugated feed is reported in [28], but no details or design drawings
are given.

Aboul-Atta and Shafai [9] consider a method of e�ciently computing the fields
from o�set reflector antennas illuminated by matched feed using the so-called modified
stationary phase method. Zaghloul and Shafai [40] study the e�ect of feed displace-
ment on the cross polar performance of a reflector system with a matched feed. They
use two methods for calculating the field, namely the scalar aperture method and the
vector current method, where the scalar aperture method will always yield lower cross
polarization. The scalar method refers to the approximation that the feed amplitude
pattern on the reflector surface is the same when the feed is displaced in the focal
plane and only the phase term is modified.

Tun and Clarricoats [41] consider a feed array of seven circular feeds. Instead of
matching the focal plane fields with higher order modes in each horn, they introduce
orthogonally polarized fundamental modes (TE

11

) in two feeds next to the excited
one with the right phasing and amplitude. The method achieves larger bandwidth
than the conventional matched feeds, but requires a bulky feed array and additional
feed network components. A similar technique is used by Foged et al. [42, 43] for
cross-polarization reduction in the quiet zone of a compact range by matching the
focal plane asymmetric field with two additional horns and a feeding network. And
also by Zamanifekri and Smolders [44], who use excitation of adjacent array elements
to compensate beam squint for circular polarization. These array techniques, where
several discrete radiators are used to obtain cross polarization reduction, will not be
treated further in this thesis.

In a 1980 paper on general o�set reflector antennas Jamnejad-Dailami and Rahmat-
Samii [45] conclude that in most cases, a feed tilt in the direction of the center of
the projected aperture produces “ . . . a better overall antenna pattern.” than a tilt
towards the center of the generating cone. Prasad and Shafai [10] perform a similar
study, but with matched feeds and come to basically the same conclusion: Though
cross polarization performance deteriorates with larger feed tilt, pattern symmetry
and sidelobe level are improved by directing the feed towards the center of the pro-
jected aperture. This is especially true for larger feed tapers ( ≠20 dB in the article).
The study uses the analytical model for waveguide mode radiation [46], and they note
that the larger the feed tilt, the larger the amount of TE

21

mode is needed. It can
also be seen from the results that with more feed taper, in e�ect meaning a larger
feed aperture, less of the TE

21

mode is needed.
Nearly ten years pass before Shee and Smith [47] publish a paper on matched

feeds in 1997. This time employed on a seven element hexagonal feed array. The
feed elements are circular and presumably, analytical mode radiation patterns have
been used, but no mention of this is made. The mode content for each of the seven
feeds is optimized using a numerical minimization procedure. The objective function
is an average of cross polarization levels in a number of discrete far-field points. The
radiation from each mode in each feed in these FF points is precomputed and used
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during the optimization. Good reduction in maximum cross polar levels are obtained,
but no real horn designs or bandwidth data are given.

The next major contribution to the matched feed technology is a European patent
filed by Eutelsat in 2001 and granted in 2005 [20]. In it, an axially corrugated elliptical
matched feed is described employing a mode launcher with three axial slits. The slits
and corrugations are made such that the whole feed can be manufactured by die
casting. It is stated that at least 5 % of bandwidth can be obtained, but no results
are presented. An American patent of a very similar structure was filed by Raven in
2007 and granted in 2010 [21].

In a conference paper Bahadori and Rahmat-Samii [48] design a matched feed
for an o�set back-to-back reflector system described in [11]. The same feed design is
published in a later paper [12]. The authors apply a global minimization algorithm,
Particle Swarm Optimization (PSO), to first find the required mode coe�cients based
on analytical radiation formulas [46]. A feed which approximately produces these
modes in the aperture is subsequently designed in HFSS. The feed axis has a large
o�set angle of 90¶. Cross-polar reduction is good at midband, but the ≠25 dB (9 dB
improvement) bandwidth is only 2.5 % and the pin configuration will only work in
one polarization.

Meanwhile, Sharma, Pujara, Dey, and colleagues have published several papers on
matched feeds [16, 17, 36, 49–56] from 2008 to 2016. They have treated both smooth
circular horns [36, 49, 54, 56], corrugated waveguides [17, 51, 55], and pyramidal
horns [16, 53]. Also a numerical technique for extracting scattering parameters of
waveguide sections with posts has been presented [56–58]. The technique is based
on Method of Moments (MoM), but with waveguide Green’s functions. Several of
the papers concern an f/D = 0.82 reflector. Most of the papers do not mention
the bandwidth of the cross polarization reduction. However, they were the first to
publish measured results of a corrugated matched feed [55]. In this publication three
arc-shaped septums are employed instead of pins, which reportedly gives a better
return loss.

Pour and Shafai have also published work on matched feeds in this period [14, 22,
59–65]. They introduce a novel way of exciting the asymmetric mode, namely, in a
coaxial choke around the main feed [22, 59]. The advantages of exciting the higher
order mode in a separate waveguide is an improved impedance bandwidth and the
ability to independently control the cuto�s of the modes. The authors also introduce
a variation on the well known mode launcher with two pins in the waveguide. They
place the pins right at the radiation aperture of the waveguide feed [59, 62]. This is
done in order to minimize the bandwidth limitation introduced by the di�erent phase
velocities of the modes in waveguide sections. Owing to this, they obtain a cross polar
level 30 dB below peak over a 7.5 % bandwidth corresponding to a 10 dB improvement
bandwidth of approximately 4.5 %. However, unwanted non-propagating higher order
modes can potentially radiate, since there is no section of waveguide to suppress them.

Yang et al. [18, 66, 67] apply the concept of matched feeds to a tri-reflector
compact range. The motivation is to improve the cross-polar discrimination in the
quiet zone. They use a similar design method as Rudge and Adatia used for a single
reflector, namely conjugate matching the focal plane field when the main reflector
is illuminated by a plane wave. As in the single reflector case, they arrive at an
asymmetrical cross-polar component in the focal region which can be matched with
HE

21

hybrid mode. They design a corrugated horn with a mode launcher before
the corrugated section. The achieved bandwidth is less than 1 % at a frequency of
119 GHz.

In three recent papers, Jana, Anoop, and Bhattacharjee consider circular [68] and
rectangular [15, 69] matched feeds. The ≠30 dB cross-polar discrimination bandwidth
of the circular feed is 2.7 %. Power normalized versions of analytical circular waveg-
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uide modes are presented. The rectangular matched feed in [15] employs the higher
order TM

11

instead of the TE
11

proposed in [34]. In [23], Jana and Bhattacharjee
introduce a novel horn cross section shape which puts the cuto�s of the higher order
waveguide modes closer to that of the fundamental mode. The cross section shape
is an intersection between a circle and a rectangle and the eigensolutions are found
with a 2D finite element method. The same authors have also presented work on
numerical techniques to treat matched-feed systems [70–72].

The largest 10 dB improvement bandwidth is, to the author’s knowledge, achieved
by Dey et al. [24] by exciting the TE

21

mode in a series of irises with displaced centres.
They obtain a bandwidth of 10 % for one polarization in two cases: an f/D of 0.5
and 0.8. However, since the feed has no flaring after the mode launcher, it is basically
an open ended waveguide, the pattern would be too broad for most practical reflector
systems. Also, the omission of a horn after the mode launcher would most likely
result in significant cross polarization in the 45¶ plane, which is not mentioned. In a
later paper, Dey [19] has combined the displaced iris mode launcher with a corrugated
horn section and demonstrates that the concept also works for a more realistic feed.
He obtains 8 % 10 dB and 9.5 % 7 dB improvement bandwidth for one polarization.
The considered reflector system has a severe o�set angle of 90¶.

2.7 Summary

The preceding sections have given the reader an introduction to cross polarization
in o�set reflector antennas and matched feeds. Basic concepts regarding reflector
antennas, particularly of the o�set kind, have been refreshed.

The problem and precise nature of the cross polarization arising in o�set reflector
antennas has been described, which leads naturally to the introduction of matched
feeds. The idea behind the matched feeds is explained and fundamental di�culties
in making them wideband are examined.

We have taken a look at the existing literature on the subject, with special interest
in how other authors address the bandwidth problem. A satisfactory solution has yet
to be published. Also virtually absent in the literature are: 1) dual polarized designs
and 2) proper explanation of how mode launching devices work.





CHAPTER 3
Determination of

Compensating Waveguide
Modes

Compensating the cross polarization in an o�set single reflector system requires cross
polarization to be radiated by the feed with specific pattern and phase. In this chap-
ter, we shall concern ourselves with determining combinations of waveguide modes
which can achieve this desired radiation. A review of the most commonly used
method, the focal field approach, is given. Then an alternative method based on
direct optimization of a set of waveguide modes based on the reflector aperture field
is presented. A parametric study using this method is carried out.

3.1 Focal Region Field Approach

The fields in the focal plane1 of an o�set parabolic reflector antenna were investigated
by Bem [37] in 1969. The focal plane field is computed given a plane wave incident
from boresight of the antenna. PO currents are calculated followed by the fields near
the focal point of the paraboloid. Bem subsequently makes some approximations
assuming a large f/D ratio which simplifies the fields in the focal plane to
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where u = D

2f

kfl, in which k is the free space propagation constant and fl represents
the radial distance to the observation point in the focal plane. This case is for a
reflector which is o�set in the xz-plane and with the incident plane wave polarized in
the x direction. The expressions for an incident wave polarized along y are obtained
by interchanging x and y components and negating „ in Equation (3.1)2 resulting in:

1In this context the focal plane is a plane which contains the focal point and is perpendicular to
the axis of the cone generating the o�set reflector, i.e. where the feed horn aperture would be.

2There seems to be a typo in [37] where it states that „ should be replaced by „ + fi/2.



22 Chapter 3. Determination of Compensating Waveguide Modes

E
x

E
0

= j
D

f
tan ◊

f

2
J

2

(u)
u

sin „ (3.2a)

E
y

E
0

= 2J
1

(u)
u

+ j
D

f
tan ◊

f

2
J

2

(u)
u

cos „ (3.2b)

E
z

E
0

= ≠j
D

f

J
2

(u)
u

cos „. (3.2c)

Several things are worth noting from these equations:

• The cross-polar field in the focal plane disappears in the case of no feed tilt
(◊

f

= 0). This is in line with the discussions of Sections 2.2 and 2.3.

• The cross-polar (and the second term in the co-polar) component are in phase
quadrature with the principal co-polar term.

• The z-component of the electric field is larger than the cross-polar component
(for ◊

f

< 90¶) and una�ected by the o�set angle.

Rudge and Adatia [6, 32, 34] use the above to justify the use of higher order
waveguide modes for cross polarization compensation. The idea is that, by reciprocity,
conjugately matching the incident fields will yield an antenna which radiates the same
as the incident wave, but in the reverse direction. Thus if a feed horn can be made
which generates the complex conjugate of the field given in (3.1), a linearly polarized
plane wave will be generated in the aperture of the reflector.

The authors propose that this is accomplished by overmoding the feed horn of
the reflector to match the desired field. Specifically, they propose the addition of
the TE

21

mode in a circular horn. Field configurations of circular waveguide modes
are given in Appendix B.3. Setting m = 2 and choosing the top line (first of two
degenerate sets) in Equation (B.42b), we obtain the transverse E-field of the TE1

21

mode. Evaluating the field along the two paths „ = 0 and „ = fi/2 yields

E
x

(uÕ, 0) Ã J
2

(uÕ)
uÕ (3.3a)

E
y

(uÕ, 0) = E
x

(uÕ, fi/2) = 0 (3.3b)

E
y

(uÕ, fi/2) Ã J
2

(uÕ)
uÕ , (3.3c)

where J
2

(x) is the second order Bessel function and uÕ = ‰

Õ
21

fl

a

, in which ‰Õ
21

is the first
root of the derivative of the second order Bessel function, and a is the radius of the
waveguide. Looking in the same two cuts of Equation (3.1) („ = 0 and „ = fi

2

), we
see that given the right constants and the correct waveguide radius such that u = uÕ,
the TE1

21

mode can be matched with the x component and the second term of the y
component of the focal plane field. Now choosing the bottom line in Equation (B.42b)
and evaluating along the same two paths, we obtain the TE2

21

(second degenerate set)
mode fields
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These must satisfy the cross terms in Equation (3.2). The fit between J Õ
2

(uÕ) and
J

2

(uÕ)/uÕ is not perfect, but it is argued in [32] that a good approximate match can
be obtained since the functions are similar.
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The above constitutes the focal plane matching method which justifies the use of
the two orthogonal TE

21

modes for compensating cross polarization in o�set reflector
antennas. The analysis provides valuable insights, and by careful bookkeeping, even
the required amount of the higher order modes can be approximated with this method.
However, there are several issues:

1. Equations (3.1) and (3.2) are approximations for large f/D. Bem [37] states
that the approximation is good for f/D Ø 1, but matched feeds would typically
be desirable to implement for reflectors with smaller f/D.

2. Only boresight incidence is considered.

3. Rudge and Adatia only demonstrate a match in the two principal planes as
reproduced above. The rest of the focal plane field cannot be matched perfectly
with the TE

21

modes alone. What is the implication of this?

4. Feed tapering is not included in the model, and thus, we are trying to match an
unrealistic focal plane field, which may have an e�ect on the optimal excitation
coe�cients.

5. The considerable amount of z-directed field is not addressed.

Most of the problems above may be solved or partly solved by augmenting the
method. Valentino and Toulios [73] have presented results which could be used to
address problems number two and four. They have generalized Bem’s work to include
other angles of incidence, and they present radiation patterns where they indirectly
take the feed taper into account. Problem number one can be accounted for by using
the full formulas given in [37] or [73]. Since the focal plane field and waveguide fields
are known in the whole focal plane, one could also find the best match with TE

21

and/or other modes over the whole aperture, thus addressing problem number three
and five.

Implementing all these solutions would be quite tedious. Therefore, a simpler,
more direct approach which does not su�er from the above issues shall be presented
below.

3.2 Optimizing Reflector Aperture Field

To mitigate the drawbacks of the focal field matching method described in the pre-
vious section, we employ a more direct method. The procedure is based on the
conjecture that a nicely polarized reflector aperture field will produce a nicely po-
larized far-field. Indeed, since the aperture fields of the paraboloid are everywhere
locally plane waves according to the GO approximation, the equivalent currents con-
stitute Huygens sources, as explained in Section 2.2. A single Huygens source radiates
no cross polarization, so if the aperture field is parallel everywhere, the equivalent
Huygens sources will radiate no cross polarization.

A combination of radiating waveguide modes in the aperture of a circular feed are
optimized to approximate the above condition as well as additional conditions given
below. The resulting excitation coe�cients will be the mode combination needed for
matched feed operation.

3.2.1 Optimal Excitation Coe�cients
In order to find the optimal combination of modes in the horn aperture we must
first define what the desired reflector aperture is. In other words, we need a suitable
objective function.
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While minimizing the cross polarization of the antenna, the directivity must not be
degraded. A good measure of the maximum directivity of an antenna is the combined
spillover and aperture e�ciency. The aperture e�ciency (÷

A

) of an antenna as defined
in [74, Sec. 4.6] takes illumination e�ciency (÷

i

), cross polarization e�ciency (÷
x

),
and phase-error e�ciency (÷
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) into account:

÷
A

= ÷
x

÷
p

÷
i

(3.5)

=
--˜

A

E
co

(fl, „)dA
--2

A
˜

A

(|E
co

|2 + |E
cr

|2)dA
, (3.6)

where A denotes the aperture. The spillover e�ciency, ÷
s

, measures how well the
radiation of the feed is confined within the reflector surface:
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where P
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is the total power radiated by the feed, and P
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is the power incident
on the reflector. In the GO approximation, this is the same as the power flow of the
reflected field passing through the aperture. The product of aperture- and spillover
e�ciencies, ÷

A

÷
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, is a measure of the co-polar on-axis gain of the antenna. However,
maximum co-polar gain does not ensure low cross polarization, which is the goal of
this study. Therefore, we define the cross-polar aperture error, E
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which measures the cross-polar power relative to total power in the aperture.
We now solve the optimization problem

max
C

÷
A

÷
s

≠ K
cr

E
cr

, (3.9)

where C represents the unknowns to be found: the mode excitation coe�cients, the
feed tilt, and horn aperture size. K

cr

is a constant which weighs the importance of
our two objectives. It means that the on-axis gain of the antenna is maximized with
an additional penalty for high cross polarization controlled by K

cr

. An L-BFGS-B
algorithm of MINPACK [75] is used to solve the problem, where the integrals over
the aperture are evaluated numerically at each iteration.

As this is a dual-objective optimization problem, choosing the weighting constant,
K

cr

, is critical. We want the cross polarization as low as possible, but on the other
hand, putting excessive weight on E

cr

will result in some very bad antennas with
e.g. nulls in the aperture field. By analyzing both objectives for several values of
K

cr

, a good compromise is found to be K
cr

= 50, for which nearly optimal aperture
e�ciency can be obtained with very negligible cross polarization.

3.2.2 Calculation Method
An evaluation of the objective function involves the following procedure. The reflector
aperture field is evaluated in a list of points which lends themselves well to numerical
surface integration. For each xy point in the reflector aperture the following procedure
is applied

1. Calculate z-coordinate on reflector surface.

2. Transform xyz-point on reflector to rÕ◊Õ„Õ in feed coordinates.
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3. Evaluate feed field for given ◊Õ„Õ direction by summing the radiation from each
mode in the aperture. The radiated field from a waveguide mode is calculated
from formulas in [76] (reproduced in B.3.3).

4. Find reflected aperture field by applying Geometrical Optics, Equation (2.2)
[3].

The three elements of the objective function (3.9), the aperture e�ciency, the spillover
e�ciency, and the cross-polar aperture error are evaluated by numerical integration.

3.2.3 Results
The optimization described above has been carried out for a range of reflector geome-
tries. Namely the reflector f/D has been varied from 1 to 0.3, keeping the aperture
size and clearance constant. This results in increasing o�set angles. For each ge-
ometry, the mode excitation coe�cients, feed tilt, and feed size have been optimized
according to Equation (3.9). The resulting mode coe�cients can be used in the initial
design of a matched feed for the given geometry.

In Figure 3.1 only the modes which have previously been mentioned in the lit-
erature are included in the optimization: TE

21

modes for compensation of the tilt-
induced cross polarization and TM

11

modes for compensation of the cross polarization
of TE

11

. For each polarization, specific degenerate versions of TE
11

, TE
21

, and TM
11

modes are needed3 (denoted with superscripts) — see also [32].
As expected, the amount of needed TE

21

content increases with decreasing f/D
(increasing o�set angles). The requirement for the two di�erent TE

21

modes is al-
most equal for horizontal and vertical polarization. On the other hand, the optimal
TM

11

amplitude increases with o�set angle for horizontal polarization and decreases
for vertical. It may also be noted that the need for phase quadrature of the TE

21

modes is confirmed. The required phase is 90¶ for horizontal and ≠90¶ for vertical.
This is a consequence of yz-o�set, but is also dependent on the sign conventions of
mode definitions. The sign of the compensating modes is not of importance for the
discussion, but of course it must be correct in a design.

Below the respective mode coe�cient plots for horizontal and vertical polarization
in Figure 3.1, the resulting aperture field is plotted for an f/D of 0.5. No cross
polarization is visible with the naked eye, which is a preliminary validation of the
method. The aperture fields may be compared to the ones in Figure 2.4(c), which
represent the same geometry, but with a conventional feed.

In the literature, only TE
21

modes are mentioned in relation to smooth circular
horns. However, we have found that including the zero-order modes TE

01

and TM
01

can enhance the performance and even replace the TE
21

modes4. Figure 3.3 shows
optimum mode content when the zero order modes are included with the TE

21

modes.
TE

01

is included for horizontal polarization and TM
01

for vertical polarization. This
may be easily understood by looking at the zero order mode fields in Figure 3.2 and
comparing with Figure 2.8. The modes have regions of cross polarization which are
equivalent to the TE

21

modes’.
Figure 3.4 shows the results when TE

21

modes are excluded and only the zero-
order modes compensate the cross polarization. As is evident from the aperture field
plots, the cross polarization is adequately suppressed. To the author’s knowledge,

3Note that the specific TE21 mode needed for each polarization depends on if the reflector is
o�set in the x- or y-direction. In this analysis, the o�set is in the y-direction, which means that
TE2

21 (set 2) is needed to compensate the fundamental mode TE1
11 (set 1). Would the reflector be

o�set in the x-direction instead, TE21 and TE11 would be of the same set.
4The zero order modes were included in the mode optimization by suggestion from Dr. Stig Busk

Sørensen, TICRA.
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Figure 3.1: Optimized mode excitation coe�cients for f/D values
between 0.3 and 1. Zero-order modes have been excluded. Resulting
reflector aperture fields for f/D = 0.5 are shown. K

cr

= 50.

x̂

ŷ

(a) TE2
01 (b) TM1

01

Figure 3.2: Transverse fields of the zero order modes. Regions of cross
polarization equivalent to those of the TE

21

modes are highlighted.

the use of TE
01

and TM
01

modes for matched feed design had not been mentioned in
the literature before [P1]. In order to validate the claim, a full matched feed design
employing only TM

01

for matching, is presented in Appendix A.
Including the zero order modes produces slightly better results, but all the aper-

ture plots in Figures 3.1, 3.3, and 3.4 are satisfactory. Therefore, in a design situation,
compensating modes should be chosen based on convenience: ease of generation and
possibility of sustaining across a large bandwidth. An advantage of the TM

01

mode
is that its cuto� is closer to TE

11

than the cuto� of TE
21

is. This advantage is,
however, only applicable in single polarized designs, since TE

01

or TE2

21

is needed
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Figure 3.3: Optimized mode excitation coe�cients for f/D values
between 0.3 and 1. Horizontal (left column) and vertical (right col-
umn) polarization. Resulting reflector aperture fields for f/D = 0.5 are
shown. K

cr

= 50.

for the other polarization. For dual polarized designs, it is most convenient to use
the two degenerate TE

21

modes, as they have equal cuto� frequencies and therefore
phase constants.

Does the optimization of the reflector aperture field actually result in good far-
fields? An example reflector with f = 0.5 m, D = 1 m, and clearance DÕ = 0.1 m is
analyzed in GRASP at 13 GHz. Illuminated by a co-polarized feed, the very com-
pact reflector system radiates severe amounts of cross polarization as shown in Fig-
ure 3.5(a). Next the reflector is illuminated by an open ended waveguide excited
by TE2

11

, TM1

01

, TE1

21

, and TM2

11

in phase and magnitude as dictated by the top
right plot of Figure 3.3. The resulting far-field pattern of the reflector system in Fig-
ure 3.5(b) exhibits significantly lower, basically negligible cross polarization. The field
from the feed is calculated as a full waveguide-excited method of moments analysis
and not by the Risser formulas [76] used during optimization.
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Figure 3.4: Optimized mode excitation coe�cients for f/D values
between 0.3 and 1. TE

21

modes have been excluded. Resulting reflector
aperture fields for f/D = 0.5 are shown. K

cr

= 50.
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Figure 3.5: Validation of the aperture field optimization procedure.
Secondary patterns of an f/D = 0.5 reflector illuminated by modes dic-
tated by the upper right plot of Figure 3.3 (PO+PTD calculation). The
secondary pattern when the same reflector is illuminated by a perfectly
co-polarized Gaussian beam is shown for reference. Asymmetry and
diagonal plane cuts are plotted.
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3.3 Summary

A review of the focal plane matching method was given; the method originally used
to justify the use of TE

21

mode for matched feed design. Examining the focal plane
fields around the focus provides good insight into the problem at hand, however for
a quantitative analysis, it has several drawbacks. Therefore, a direct optimization of
mode coe�cients given an objective function in the reflector aperture was presented.
This method is simple enough to retain physical insight of the problem, but sophis-
ticated enough to provide concrete modal excitation coe�cients which result in high
quality secondary patterns.

A parametric study of the required mode combinations for di�erent system con-
figurations was conducted. The reflector f/D was varied and optimal modal com-
binations were acquired for both modes of linear polarization. In the process it was
discovered that TE

01

and TM
01

modes can be used together with or instead of the
TE

21

modes.





CHAPTER 4
Mode Conversion

In this Chapter, possible ways to generate the desired waveguide modes found in
Chapter 3 shall be discussed. Usually, the input of a feed is a waveguide supporting
only the fundamental mode, possibly in two polarizations. In order to get the desired
combination of modes, some of the energy propagating in the incident mode must be
coupled to higher order modes. The component of the feed which achieves this, is the
previously mentioned mode launcher or mode converter.

A simple analytical framework is presented to analyse how inclusions in the waveg-
uide excite higher order modes. Currents or equivalent currents are induced on the
inclusion and these currents subsequently radiate waveguide modes depending on
their position and orientation. The method is very simple and it e�ectively predicts
the behavior of common mode converters in excellent agreement with simulations.
The simple nature of the model paves the way for conception of new, more advanced
mode converters, as will become clear in Chapter 5. The essential results of this
chapter have been published in [P2].

4.1 Need for Asymmetry

The desired higher order modes in a circular waveguide are: the TE
21

, TE
01

, TM
01

,
and TM

11

modes. For all modes m ”= 0 there exists two orthogonal versions corre-
sponding to cos m„ and sin m„ azimuthal variations, respectively. TE

01

and TM
01

have only one version each. We need both orthogonal TE
21

and TM
11

versions —
one for each operating polarization. The two versions are denoted as part of the first
and second set (see Section B.3) and this number is placed in superscript, e.g. TE2

21

is the TE
21

mode, second set.
Usually we are interested in converting power from the fundamental mode, TE

11

,
into these other modes. The fundamental mode also has two orthogonal versions,
corresponding to two linear polarizations. Power cannot be coupled between di�erent
azimuthal indexes and di�erent sets in circular symmetric waveguides and horns (e.g.
smooth conical, radially corrugated, axially corrugated, and Potter horns). One way
to realize this, is by setting up the mode matching equations from the boundary con-
ditions of the electric field [77]. Terms in the mode matching equations are integrals
of products between waveguide modes at either side of the junction. Each component
of each circular waveguide mode contains factors of sin m„ or cos m„, corresponding
to the set (cos or sin) and the azimuthal index (m). If the two factors are not the
same, that integral will be zero. This is a consequence of the full period orthogonality
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of the sine and cosine functions. Namely, letting m and mÕ be two integers then

ˆ
2fi

0

sin(m„) cos(mÕ„)d„ = 0 for all m, mÕ, (4.1)

accounts for the orthogonality between set 1 and set 2 and

ˆ
2fi

0

sin(m„) sin(mÕ„)d„

=
ˆ

2fi

0

cos(m„) cos(mÕ„)d„

=
I

0 for m ”= mÕ

fi for m = mÕ (4.2)

accounts for orthogonality between di�erent azimuthal indexes.
Thus, the TM

11

(in the same set as the incident mode) mode can be generated
by circular symmetric structures, but the other desired modes must be generated in
circularly asymmetric parts of the feed.

4.2 Mode Excitation from Currents

Consider a waveguide of arbitrary cross-section. In a region of the waveguide, electric
and magnetic source currents exist, as shown in Figure 4.1. The fields due to the
source currents can be expanded in waveguide modes travelling along the waveguide
in both directions. The excitation amplitude of these modes can be found by applying
the Lorentz reciprocity theorem with each waveguide mode as the secondary field as
in done in e.g. [78, 79].

J M

z

V

+−

Figure 4.1: Electric and magnetic currents, J and M, exciting modes
in a waveguide.

Assuming that all the waveguide modes are power normalized as in [80], the
excitation coe�cient of the ith mode due to the currents is

V ±
i

= Z
i

2

˚
V

!
≠Eû

i

· J + Hû
i

· M
"

dv, (4.3)

where Z
i

is the wave impedance of the mode and plus or minus signs in the superscript
refer to waves travelling in the positive or negative z-direction, respectively. In short,
the excitation coe�cient of a mode due to a current can be found by simply projecting
the current onto the field of the same mode travelling in the opposite direction.
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(a) Radial pin model

M

V

+−

M
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= –
m
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z

(b) Longitudinal stub model

M

V

+−

M
„

= –
m

H inc

„

(c) Azimuthal stub model

Figure 4.2: MoM meshes of three types of mode launchers and their
analytical current representations. Blue arrows represent electric cur-
rent and red arrows represent magnetic current.

4.3 Waveguide Inclusions Modeled by Currents

Nearly all matched-feed mode launchers in the literature can be represented by a
combination of current filaments, electric or magnetic. An overview can be seen in
Figure 4.2.

Pin type mode launchers are especially popular (e.g. [6, 12, 36]). These can be
e�ectively modeled using electric currents, see Figure 4.2(a). Let us assume that a
current element in the fl direction represents a metallic post

J
e

= fl̂I
0

”(R ≠ RÕ). (4.4)

We initially disregard how this current might be excited on the post and look only
at the consequences. Inserting (4.4) into (4.3) together with mode fields of circular
waveguide modes, we obtain the coupling coe�cient of each mode. Dropping some
constants we can write

V TE

mn

Ã ±m

flÕ J
m

(µflÕ) cos
sin m„Õ (4.5)

V TM

mn

Ã jk
⁄

k
J Õ

m

(⁄flÕ) cos
sin m„Õ, (4.6)
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where the top and bottom choices correspond to coupling to the first and second
set, respectively. The factor of m for V TE

mn

means that the desired TE
01

cannot
be excited by a radial current, which is because the mode has no E-field in the fl-
direction. Conversely, the desirable TM

01

mode is excited equally well independent of
the azimuthal position of the current. Considering the generation of the TE

21

mode
excited by a current at a position near the edge of the waveguide, the dependence on
azimuthal position is

V T E

21

Ã cos
sin 2„Õ. (4.7)

This function has four extrema around the waveguide, two positive and two negative.
Thus, if more than one radial current is present they need to be in the correct phase
depending on position. Figure 4.3 shows the direction of currents placed at the
maximum positions such that they all couple constructively to the two degenerate
TE

21

modes.

(a) (b)

Ei
Ei

Figure 4.3: Azimuthal positions of radial currents to excite maximum
TE

21

mode of (a): set 1, and (b): set 2. Arrows indicate the mutual
directions the currents must have to add constructively to the TE

21

modes. Blue arrows indicate electric current. The incident TE
11

modes
from which the currents need to be excited are indicated with black
arrows.

Another class of mode converters are based on stubs, rectangular waveguide at-
tached perpendicular to the guide wall. The first of these was presented by Watson
et al. [8] in which sliders could tune the depth of the stubs. A similar concept is that
of grooves placed at a step in the radius of the waveguide like in [20, 21]. In fact there
are also examples of TE

21

an TE
01

mode converters where the circular waveguide is
fed directly from rectangular waveguides around the circular waveguide wall [81–83],
but not for matched feed applications.

For conceptual understanding, we shall again start by disregarding the excitation
of the stubs and assume a rectangular waveguide fundamental mode in their apertures.
For simplicity we model this as a magnetic current element along the length of the
opening (transverse to the electric field lines) — see Figures 4.2(b) and 4.2(c). Let
us first consider a z-directed magnetic current corresponding to stubs like the ones in
[8]:

J
m

= ẑI
0

”(R ≠ RÕ), (4.8)

where the current is placed at the waveguide wall, fl = a. Inserting into Equa-
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(a) (b)

Ei
Ei

(c) (d)

Ei
Ei

Figure 4.4: Azimuthal positions of magnetic currents to excite max-
imum TE

21

mode of (a) and (c): set 1, (b) and (d) : set 2. Arrows
indicate the mutual directions the currents must have to add construc-
tively to the TE

21

modes. Red arrows indicate magnetic current. The
incident TE

11

mode from which the currents need to be excited in each
case is indicated with black arrows.

tion (4.3), we obtain coupling coe�cients to TE and TM modes as follows

V TE

mn

Ã sin
cos m„Õ (4.9)

V TM

mn

= 0. (4.10)

Note that a z-directed magnetic current does not couple to the TM modes, because
the z-directed H-fields are zero. The positions of maximum coupling to the TE modes
are 90¶ shifted compared to the case with radial electric currents (Equation (4.5)).

We can also consider a stub which has the leading dimension in the azimuthal
direction, thus giving rise to a „-directed magnetic current:

J
m

= „̂I
0

”(R ≠ RÕ). (4.11)

Again inserting into Equation (4.3), the coupling coe�cients to the waveguide modes
from a „-directed magnetic current element is obtained:

V TE

mn

Ã ûm
cos
sin m„Õ (4.12)

V TM

mn

Ã cos
sin m„Õ. (4.13)

The positions exciting a maximum of TE1/2

21

are shown in Figure 4.4 for both z-
and „-directed magnetic currents. The incident electric field lines of the TE

11

mode
which we wish to couple from are also shown.
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4.4 Excitation of Currents by Incident Mode

Next task is to relate the incident field, and the type and position of waveguide in-
clusions to the generated currents, electric and magnetic. A rigorous implementation
of this would require an integral equation formulation. Here, we shall use a simpler
formulation based on the perturbation principle. Namely that the incident mode will
directly induce a current in the inclusion without itself being perturbed.

An inclusion is represented by a dipole, electric or magnetic. The dipole is oriented
in the direction given by the unit vector, ĉ. The currents are then determined from
the incident fields, Einc and Hinc as

J = –
e

(Einc · ĉ)ĉ (4.14a)
M = –

m

(Hinc · ĉ)ĉ, (4.14b)

where –
e

and –
m

are the electric and magnetic polarizabilities, respectively1. The
polarizabilities are unknown quantities which depend on the inclusion shape and the
frequency. Even without knowing the specific polarizability, useful knowledge can
be gained from the remaining part of (4.14): the incident field projected onto the
inclusion determines the sign and magnitude of the excited current.

In a more general case, we could have included polarizabilities linking electric field
and magnetic current and vice versa and/or dyadic polarizabilities (coupling fields to
di�erently oriented currents), but the scalar polarizabilities work well with the simple
inclusions treated here.

4.5 Validation by Simulation

In order to confirm the analysis of Section 4.3 and 4.4, we perform a series of sim-
ulation experiments. A piece of waveguide which supports higher order modes is
excited at one end with the fundamental mode. Midway on the waveguide we insert
an asymmetrical component in the form of a radial pin, a longitudinal stub, or an
azimuthal stub. The configurations are the ones shown in Figure 4.2. We proceed
to find the coupling from the fundamental modes to the higher order modes at the
output for di�erent „-positions of the asymmetrical component. The simulation is
carried out with the full wave method of moments (MoM) solver of GRASP [30].

Equations (4.3) and (4.14) are used to compute the same coupling quantities. The
absolute polarizabilities of the inclusions are not known. Therefore, the analytical
results are scaled by a constant complex factor to bring them to the level of the
MoM results, but it is the same number for all modes and for all „-positions. The
comparisons between the analytical model and MoM are shown in Figures 4.5, 4.6,
and 4.7 for longitudinal stubs, radial pins, and azimuthal stubs, respectively. The
full lines are calculated with the analytical model and the stars of the same color are
MoM simulations.

The correspondence between the simple analytical model and full wave simulations
is excellent considering how crude the model appears. The case of the longitudinal
stub shows especially good correspondence. Note that the phase relationship between
modes as well as amplitude is well captured2.

From these figures, it is easy to devise mode launchers with several inclusions
around the circumference, which couple to desired modes and in which contributions
to unwanted modes cancel out. The simple two- or three-inclusion mode launchers in

1Polarizabilities are often used as the ratio between dipole moment and field, and not as here,
current and field. The di�erence is merely a time derivative.

2Di�erent phase delays of the modes travelling in the length of waveguide after the inclusion are
taken into account in the analytical model.
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the literature may be understood by manual inspection of the curves. More advanced
mode launchers may be derived from the same theory by automatic methods, as will
be demonstrated in the next chapter.
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Figure 4.5: Mode generation from a longitudinal stub as function of
stub „-position around the waveguide wall. The incident mode is the
TE

11

mode of set 1 (top) and set 2 (bottom). Full lines are the analytical
model and stars are from MoM simulations in GRASP.
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Figure 4.6: Mode generation from radial pin as function of pin „-
position around the waveguide wall. The incident mode is the TE

11

mode of set 1 (top) and set 2 (bottom). Full lines are the analytical
model and stars are from MoM simulations in GRASP.
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Figure 4.7: Mode generation from azimuthal stub as function of stub
„-position around the waveguide wall. The incident mode is the TE

11

mode of set 1 (top) and set 2 (bottom). Full lines are the analytical
model and stars are from MoM simulations in GRASP.
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4.6 Frequency Characteristics of Mode Launchers

As mentioned in Section 4.4, the polarizability of the waveguide inclusions depend
on frequency, thus making the mode launcher frequency dependent. In this section
we shall examine the frequency dependence of an example mode launcher from the
previous sections.

Consider the simplest possible mode launcher, namely a waveguide with one or
more of the inclusions shown in Figure 4.2. This specific design has not been used in
the literature, since the generated modes can, and will, propagate in both directions
away from the inclusion. Therefore the asymmetric inclusions are often placed in
conjunction with a step in waveguide radius which allows higher order modes to
propagate only after the step (See e.g. [6]). The following observations also apply to
this kind of mode launchers.

The simulations here are made with a waveguide of radius a = 6.3 mm. Cuto�
frequencies for the first seven modes of this waveguide are listed in Table 4.1.

TE
11

TM
01

TE
21

TE
01

TM
11

TE
31

TM
21

13.94 18.21 23.13 29.02 29.02 31.82 38.89

Table 4.1: Cuto� frequency in GHz of waveguide modes in a circular
waveguide of radius a = 6.3 mm

Figure 4.8(a) shows frequency dependent generation of several modes when a
radial pin is placed at „ = 90¶ and illuminated by the TE2

11

mode. From Figure 4.6
we know that illumination with TE1

11

(first set) would not have excited any modes,
because the incident fl-directed field is zero at „ = 90¶. TE1

21

output rises to a peak
when it hits the cuto� frequency at around 23 GHz. At approximately 32 GHz there
is another large peak in mode generation corresponding to the cuto� frequency of the
TE

31

mode. The softer peak around 37 GHz corresponds to the resonance of the pin.
The same configuration as just described, but with a longitudinal stub instead of

a pin, can be seen in Figure 4.8(b). Similar behaviour as that of the pin is observed,
but other modes are excited. TM modes do not get excited by longitudinal magnetic
currents, but on the other hand, the TE

01

gets excited here. Again, the last peak in
all three curves results from a resonance of the stub.

It is clear that when a mode hits cuto�, it wildly disturbs the excitation of the
other modes. It is critical that this issue is properly handled in a matched feed
design. Unwanted modes must either be kept below cuto�, or their excitation should
be heavily suppressed. The latter approach shall be demonstrated in connection with
the coaxial coupler design in Section 5.2, where the cuto� of the coaxial TE

31

mode
is within the design band.

4.7 Summary

This chapter provides a framework for understanding and designing mode converters
for matched feeds. Though all the concepts are well known, the presentation of them
in this context has been missing in the literature. Despite the simplicity of the models,
excellent agreement with full wave simulations is demonstrated.

Lastly, the frequency responses of selected mode launchers are examined sub-
stantiating the conclusions on the bandwidth limitations of matched feeds given in
Section 2.5.
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Figure 4.8: Selected scattering parameters of a piece of waveguide with
a) a radial pin and b) a longitudinal stub. The radius of the waveguide
is 6.3 mm, cuto� frequencies listed in Table 4.1. The pin is 1.8 mm long.
The stub is 6.5 mm long, 2 mm deep, and 10¶ wide.





CHAPTER 5
Directional Waveguide

Couplers for Matched Feeds

As discussed in Section 2.5, our main challenges with regard to widening the band-
width of matched feeds are

1. phase dispersion due to unequal cuto� frequencies of modes,

2. resonances of the pin, slot, or other inclusion of the mode launcher.

If the first problem can be fixed, we can also fix the second problem. The reason
is that if the phase velocity of the generated mode is close to that of the incident
mode, we can allow the coupling to take place at several points along the guide,
thus avoiding the need for large resonant inclusions. This is the technique used in
waveguide directional couplers.

In this chapter a fix to the cuto� problem, inspired by Pour and Shafai [22], is
presented. The compensating TE

21

mode is coupled to a coaxial waveguide surround-
ing the circular one. The cuto� nature of the coaxial and circular guides allows the
dimensions to be tuned such that the TE

21

mode in the coaxial section has the same
cuto� frequency as the TE

11

mode in the circular section. The phase dispersion can
thus be eliminated at the cost of separating the two modes. The implementation is
inspired by Choung et al. [84, 85], where selected higher order modes in a circular
waveguide are coupled to rectangular waveguides.

The synthesis procedure for a specialized directional coupler will be presented in
this chapter. The coupler is able to couple a specified fraction of the incident TE

11

modes in a circular waveguide to specific TE
21

modes in a coaxial guide, e�ectively
suppressing unwanted couplings. This design procedure is documented in publication
[P4].

The higher order modes generated by the coupler are intended for a matched feed
horn — but it is not as simple as Plug-and-Play. Di�culties arise from the extended
length of the coupler when the modes need to be radiated. These challenges will be
discussed and an example matched feed design demonstrated.

5.1 Discrete Directional Couplers

Coupling between two transmission lines at discrete points is quite simple and is
briefly derived in [P4]. This method disregards more complex mutual interactions
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output line

a2 a3 ... am ... aM-1 aM
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(a) Forward coupling

a1

z=0 z=L

input line
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a2 a3 ... am ... aM-1 aM

βin

βout

zm L-zm

(b) Backward coupling

Figure 5.1: Coupling between two transmission lines at discrete cou-
pling points. The two lines can represent two waveguides or two modes
in the same waveguide. —

in

and —
out

are the phase constants of the input
and output mode, respectively. a

1

, a
2

, . . . , a
M

are coupling coe�cients
at M evenly spaced coupling points. L is the length of the coupler and
z

m

is the z-position of the mth coupling point.

between primary and coupled transmission lines, but is e�ective in our case because
only a fraction of the incident field needs to be coupled. The characteristics of the
coupler are completely described from the length of the coupling section, phase ve-
locities of the transmission lines, and the discrete coupling coe�cients. The concept
is illustrated in Figure 5.1 for forward and backward coupled waves. Refer to [86]
for a detailed description — here just the result is shown for forward and backward
coupling, respectively:

I
f

= e≠j—

out

L

Mÿ

m=1

a
m

e≠jzm(—in≠—

out

) (5.1)

I
b

=
Mÿ

m=1

a
m

e≠jzm(—

in

+—

out

). (5.2)

Quantities are defined in Figure 5.1. Note that both the backward and forward
coupled waves can be evaluated from the function

F (◊) =
Mÿ

m=1

a
m

e≠jzm◊, (5.3)

if ◊ = —
in

≠ —
out

for forward coupling, and ◊ = —
in

+ —
out

for backward coupling1.
F (◊) is a Fourier transform of the coupling distribution in the spectral variable ◊,
transforming the coupling coe�cients to the ◊-domain.

The phase velocities, —
in

and —
out

, are those of the waveguide modes which are
coupled from and to, respectively. For metallic waveguides, they are calculated from
the cuto� wavenumber, k

c

, as

— =


k2 ≠ k2

c

, (5.4)

and thus, they vary with frequency.

1This is a slightly di�erent definition of ◊ than the one in [86].
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5.1.1 Relative Phase
Relative phase is of great importance in multimode feed design. The phase di�erence
between the input mode and the coupled mode as they exit the coupler are dependent
on the length of the coupler and the di�erence in propagation constant. If the coupling
coe�cients have a phase di�erent from zero, this will naturally induce an additional
phase shift.

The di�erence due to propagation constants can be derived as follows. We will
assume that the coupling coe�cients have the same phase, \a. The input mode has
a simple phase delay through the coupler:

I
f

in

Ã e≠j—

in

L. (5.5)

The output mode is given by

I
f

= e≠j—

out

L

Mÿ

m=1

a
m

e≠jxm◊, (5.6)

where ◊ = —
in

≠—
out

. Assuming symmetric filter coe�cients, the summation part can
be shown to have the phase:

\
Mÿ

m=1

a
m

e≠jxm◊ = ≠◊

2L + \a. (5.7)

Evaluating the total phase di�erence between the output mode and the input mode
propagated to the end of the coupler results in

�„ = \I
f

≠ \I
f

in

=
3

≠—
out

L ≠ ◊

2L + \a

4
≠ (≠—

in

L)

= \a + L

2 ◊. (5.8)

Thus, the phase drift is half of the phase drift of the two modes just propagating for
the length L. The factor of one half is only valid for symmetric coupling distributions.
Keeping coupling structures (holes, pins, slots) small compared to the wavelength will
result in coupling coe�cients that are purely reactive: i.e. \a close to ±90¶ as desired.

5.2 Coaxial Coupler Design

Most of the contents of this section is presented in [P4] and concerns the design of the
coupler itself. The device is in a sense designed like any other directional coupler, but
many special challenges have to be taken into account for this specialized application.

5.2.1 Optimal Coupling Coe�cients
The coupler is first designed on a conceptual level, where the coupling coe�cients a

m

are sought before we decide how to implement them. The dimensions have first to be
defined such that we know the cuto� frequency of input and output modes as well as
undesired modes.

We take advantage of the fact that there exists a discrete Fourier mapping be-
tween the coe�cients and the coupling at specific ◊ values as a consequence of Equa-
tion (5.3). This makes the choice of coupling coe�cients precisely equivalent to the
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design of a finite impulse response filter (FIR) on a discrete signal. The equivalent of
the theta domain is the frequency response of the FIR filter. We just need to set up
the requirements for the design in the ◊-domain, and methods for FIR filter design
can be used to find the desired coupling coe�cients. The procedure is illustrated by
an example given below. Physical synthesis of the coupling coe�cients will be treated
in Section 5.2.3.

Example Design

An example design is summarized in Figure 5.2 for a coaxial coupler to be working
in the full K

u

band. The table contains the information relevant for coupler design:
length of coupler, number of holes, and cuto� frequencies of desired and undesired
modes. This information is used to evaluate the ◊-values for the modes in question
over the band of interest in Figure 5.2(b). Pass- and stopbands are defined as the
theta ranges we want to enhance and suppress, respectively.

The stopband and passband are used together with the length and number of
holes to find an optimal discrete coupling distribution. The length and number of
holes translate to the sampling frequency and filter length in FIR filter design. The
coupling of the desired mode in this case is 0.13 corresponding to ≠18 dB in a ◊-range
close to zero. The coupling in ◊-ranges of the undesired modes should ideally be zero.
An algorithm which finds coupling coe�cients that minimize the maximum deviation
from these goals is described in [87, 88] and implemented as a part of SciPy [89].

Figures 5.2(c) and 5.2(d) show the coe�cients and ◊-response of the resulting
coupler, respectively. The stop- and passbands are indicated in the ◊-response. As
an additional design parameter, the cuto� of the coaxial TE

31

mode is positioned in
a null of the coupler by tuning the length. This technique is employed to counteract
the general e�ect that modes couple strongly around the frequency of their cuto� as
illustrated in Section 4.6.

5.2.2 Azimuthal Hole Distribution for Unwanted Mode
Discrimination

Now that the desired amount of coupling at discrete z-positions has been determined,
we must find out how to most e�ectively transfer this energy from the input to output
modes. Many directional couplers work by simply drilling a hole of a specific size at
each coupling point. The same approach shall be taken here — however, single holes
are out of the question. The reason is that we do not have the luxury of single mode
propagation in either waveguide. By the coupler design given above, we can suppress
the TE

31

mode as well as backward travelling TE
21

modes because they result in
di�erent ◊-values than the desired couplings. The two unwanted TE

21

couplings,
however, result in the same ◊ values as the desired ones. The hole distribution must
therefore be designed to suppress unwanted TE

21

coupling.
The azimuthal placement of waveguide inclusions can be analysed by the mode

coupling theory presented in Sections 4.3 and 4.4. In Chapter 4, the inclusions were
pins or stubs in a single waveguide: a dipole is excited in the inclusion which then
radiates in the form of waveguide modes. The same principle applies for a hole
coupling between two distinct waveguides: dipoles are excited in the hole which then
radiate modes in both waveguides.

Though determining the exact coupling caused by a hole is not trivial [90–92], the
variation with azimuthal position and the inter-mode relationships are in excellent
agreement with the simple model as verified in Section 4.5. This variation between
the input and output modes reduces to a simple product between two sinusoidal
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Figure 5.2: Design of directional coupler based on wanted and un-
wanted mode cuto�s (a). Phase constants are mapped to the ◊-domain
(b) and optimal filter coe�cients are found (c). The resulting response
of the coupler is shown in (d).

functions in the azimuthal variable „. A summary of desired and undesired mode
couplings for the coaxial coupler is given in Table 5.1.

Very few of the matched feed designs in the literature are designed for dual polar-
ization. The ones that are [8, 20, 21] employ the azimuthal distribution of inclusions
45¶, 90¶, and 135¶. Figure 5.3(a) illustrates how this distribution of holes/stubs/pins
excites desired modes in the correct phase, but none of the undesired TE

21

modes.
Note that the desired couplings do not have equal strength, one is 40 % higher, mean-
ing almost twice the power. This is a significant drawback, since the optimal amount
of TE

21

mode is approximately the same for both polarizations (see Figure 3.1 in
Section 3.2.3). It can be analytically derived that moving the two outer inclusions
to 50¶ and 130¶ instead, will equalize the coupling. Figure 5.3(b) illustrates these
slightly enhanced inclusion positions and shows that the coupling to desired TE

21

modes is now the same and unwanted modes still cancel out.
Both of the above three-inclusion configurations couple significantly to one of the

TE
31

modes. Though the TE
31

couplings are also suppressed by the longitudinal dis-
tribution of the coupler, their behaviour at cuto� (Section 4.6) makes it advantageous
to suppress them as much as possible.
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Coupling „-dependence

Desired
TE1

11

æ TE2

21

cos „ sin 2„

TE2

11

æ ≠TE1

21

≠ sin „ cos 2„

Undesired
TE1

11

æ TE1

21

cos „ cos 2„

TE2

11

æ TE2

21

sin „ sin 2„

TEx

11

æ TEx

31

cos „ cos 3„

cos „ sin 3„

sin „ sin 3„

sin „ cos 3„

Table 5.1: Summary of desired and undesired mode couplings.
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Figure 5.3: TE
11

to TE
21

mode coupling in circular or coaxial waveg-
uide geometries. Each line represents the coupling from one of the input
mode polarizations to an output mode. Each inclusion is represented by
a vertical line and can contribute coupling to several modes (dots). The
total coupling of the input-output mode pairs is summed and shown in
the legend.

When more than the four couplings in Figure 5.3 need to be analyzed, it be-
comes too cumbersome to do by hand, especially as the number of holes is increased.
Therefore, the determination of azimuthal inclusion placement is optimized in a more
systematic manner. The ratio of undesired to desired modes in Table 5.1 is minimized
by a numerical optimization routine (fminimax of Matlab in this case). Constraints
are given to the optimization to ensure that the inclusions are spaced a certain mini-
mum distance from each other, and that the strength of the two desired coupling are
the same.

The optimal result will vary depending on how constraints and weighting between
objectives are chosen. The azimuthal distribution used in designs presented in this
thesis, is illustrated in Figure 5.4. The strength of desired couplings is almost equal
and has been increased from 1.3 to 2.1. TE

31

couplings are suppressed at the expense
of a small amount of undesired TE

21

modes. The hole positions are also indicated in
orange on the cross section illustration in Figure 5.5.

This method of optimizing azimuthal placement of inclusions based on the theory
in Chapter 4 is not only applicable to the coaxial coupler. It is also not limited to
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circularly symmetric waveguide structures, as the field configurations can be replaced
by those of any waveguide shape.
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Figure 5.4: TE
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to TE
21

and TE
31

mode coupling in circular or
coaxial waveguide geometries. Each line represents the coupling from
one of the input mode polarizations to an output mode. Each inclusion
is represented by a vertical line and can contribute coupling to several
modes (dots). The total coupling of the input-output mode pairs is
summed and shown in the legend.

(a) (b)
Figure 5.5: Modal E-fields of the incident circular and desired coaxial
modes for the two polarizations: (a) TE1

11

to TE2

21

and (b) TE2

11

to
TE1

21

. The azimuthal positions of the coupling holes are indicated in
orange: „ = {30.9¶, 53.8¶, 76.7¶, 102.1¶, 125.0¶, 147.9¶, 187.6¶, 347.4¶}.

5.2.3 Hole Shape and Coe�cient-to-Size Mapping
The frequency dependence of the coupling is dependent on the shape of the hole in
the waveguides. A hole with the leading dimension in the z-direction, a longitudinal
hole, will exhibit decreasing coupling with increasing frequency. This is because the z-
directed magnetic field of the input and coupled modes decreases in magnitude with
increasing frequency, as with any TE mode. The opposite applies for „-oriented,
transverse holes, whose coupling increases with increasing frequency. Riblet and
Saad [93] demonstrate that the frequency dependence can be stabilized by placing
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one longitudinal and one transverse hole at each z position. In the designs presented
here, we have chosen to use square holes, which essentially accomplishes the same
thing with a single hole, providing very stable coupling as a function of frequency.
The concept may be further enhanced by letting the length to width ratio of each
hole be slightly dependent on the hole size.

The coupling coe�cients determined in Section 5.2.1 must be translated into ac-
tual hole sizes. The task is achieved by carrying out a few simulations with just a
single slice of the coupler. This slice has the holes distributed around the circumfer-
ence of the circular guide as detailed in the previous section. The method is described
in [P4] and will not be further elaborated on here. However, the coe�cient-to-hole
mapping corresponding to the waveguide dimensions of the example design listed in
Figure 5.2(a) with the azimuthal hole distribution of Figures 5.4 and 5.5 is given in
Figure 5.6.
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Figure 5.6: Coupling of desired modes in a single coaxial slice with
the azimuthal hole distribution shown in Figure 5.5. The waveguide di-
mensions are listed in Figure 5.2(a). (a) Shows the relationship between
hole size and coupling values. The markers show simulated hole sizes
and cubic splines interpolate between. The coupling value for each size
is an average over the design frequency band. (b) Shows the inverse of
the average of the two curves in (a).

5.3 Performance Evaluation of Coaxial Couplers

The coupler design outlined in Figure 5.2 is just a list of 23 (12 unique) coupling co-
e�cients and a length specification. By the very simple mapping procedure described
in [P4], the coe�cients are translated to specific hole sizes arranged in z according
to the coupler design and in azimuth according to the procedure described in Sec-
tion 5.2.2. Nothing more is required to define the geometry of the coupler. Obviously
some initial design decisions are made regarding dimensions of the coaxial geometry,
which mostly concerns the cuto� frequencies of di�erent modes in the two regions.

Now let the coupler design in Figure 5.2 be translated to an actual geometry by
using the mapping in Figure 5.6(b). A electromagnetic model (mesh) of the geometry
is assembled (shown on the right in Figure 5.7). The coupler is a waveguide device
with four ports: a circular and a coaxial waveguide port at each end. The field
entering and leaving each port is expanded in a number of waveguide modes. The
generalized scattering parameters describe how outgoing power is divided between all
modes on all ports when power enters on a specific port and mode.

Several scattering parameters of the simulated coupler are shown in Figure 5.7 as
a function of frequency. The plotted scattering parameters — or couplings — are the
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ones resulting from excitation of the TE1

11

and TE2

11

modes on one of the circular
ports, e.g. coming from an orthomode transducer. The desired couplings are close to
the design value of ≠18 dB and all undesired couplings are suppressed below ≠40 dB.
The phase of the two desired couplings relative to the phase of TE

11

straight through
the circular section is also shown with the expected result from Equation (5.8) as
reference.

It is uncanny how well this design procedure works — no parameters have been
tuned after the full model is assembled and simulated. The azimuthal hole distri-
bution alone is responsible for the near identical desired TE

21

couplings as well as
suppression the undesired ones below ≠48 dB in the whole band. The simple coupling
to size mapping e�ectively achieves the correct coupling value. Even the phase is as
predicted by the simple theory. Each of the coupling holes radiate modes forwards
and backwards in both waveguides, but by virtue of the suppression achieved in the
◊-domain, the contributions cancel out except for the desired modes in the forward
direction. Note that the lobes in the undesired couplings are direct consequences
of the lobes in the discrete Fourier transform of the coupling coe�cients shown in
Figure 5.2(d), i.e. the ◊-domain.
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Figure 5.7: Coupling from the two input modes in the circular waveg-
uide to several modes in the coaxial guide. The two desired couplings
are colored as well as the most critical undesired coupling: the maxi-
mum reflection at the input circular port. The horizontal dashed line
in the amplitude plot indicates the desired coupling level ≠18 dB. Ver-
tical dashed lines delimit the frequency range of interest. The phases
of desired modes are plotted relative to the phase of TE
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propagation
through the circular waveguide (bottom). A CAD model of the coupler
is shown on the right.
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5.3.1 Validation of the Solver
In an e�ort to validate the results presented here, one of the coupler designs has been
simulated with another commercial solver. The coupler geometry is the one presented
in [P4], and not the same as the one just discussed. The alternative simulation is
carried out in HFSS [94] by transferring the geometry via CAD file export/import.
A comparison of selected scattering parameters computed with the two softwares is
given in Figure 5.8. Desired couplings are nearly indistinguishable between the two
calculations. Even for undesired coupling lower than ≠50 dB, the two methods agree.
The solution methods used in the two softwares are very di�erent and the agreement
shown here is a testament to the reliability of both.
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Figure 5.8: Computed scattering parameters compared with HFSS
[94]. HFSS uses a volumetric finite element solver as opposed to the
surface integral equation solver of GRASP. Markers indicate evaluated
frequency points. Results calculated with GRASP are shown with full
lines and circular markers, corresponding results calculated with HFSS
have the same colors, but are shown with dashed lines and triangular
markers.

5.4 Feed Design with Axially Corrugated Horn

The coaxial directional coupler described above successfully generates a prescribed
amount of TE

21

modes from input modes in two polarizations, over a large bandwidth.
A fundamental task remains: radiating the modes onto the reflector in suitable man-
ner. Additional modes may also need to be added to compensate the inherent cross
polarization of the TE

11

mode.
The stable amplitude and phase of the coaxial coupler comes at the price of added

complexity in this task of radiation. The fact that the fundamental and compensating
modes are separated in two distinct regions has turned out to be a significant challenge
to overcome. The following accounts for considerations and di�culties with regard
to radiating the waveguide modes. Finally, a dual polarized matched feed design is
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demonstrated, though not in the full operating frequency range of the coupler. These
result are not covered by [P4].

5.4.1 Horn Topology

The topology that we are going to use is based on the axially corrugated horn, see e.g.
[95]. This kind of feed is widely used in the industry for single beam symmetrical as
well as o�set reflectors. It can be optimized for very good radiation characteristics,
but is simpler and easier to manufacture than the radially corrugated horns. As
explained in [P1], axially corrugated horns are well suited for matched feeds because
they are short and have a wide flare — see also Section 2.5 on modal phase dispersion.
The motivation for adding a horn section to the coupler is to raise the directivity of
the antenna, minimize reflection, and minimize cross polarization arising from m = 1
modes.

To accommodate the coaxial coupler, we let the first axial corrugation of the horn
be very deep. The holes of the coupler perforate the wall between this corrugation
and the input waveguide. The configuration is illustrated in Figure 5.9. Holes in
the inner waveguide may be etched on a thin sheet of metal before it is rolled into a
cylinder.

Figure 5.9: Geometry of the axially corrugated horn assembled with
the coaxial coupler. The first corrugation of the horn accommodates
the coupler.

5.4.2 Requirements

The requirements to the feed depend on the geometry of the reflector configuration.
The main parameter is the beamwidth, which should be narrow enough to avoid
excessive spillover and wide enough to allow a decent reflector aperture e�ciency.
Obviously, the total reflector system should radiate less cross polarization than if it
was illuminated by a conventional feed.

The feed is initially analyzed without the coaxial coupler, where an unperforated
section is inserted in its place. Without the coupler, the whole feed structure is
circularly symmetric, and can thus be analyzed using Mode Matching or Body of
Revolution MoM (BoR MoM), depending on the exact geometry. These methods
drastically reduce computation time compared to general 3D methods, and are thus
well suited for optimization. Intermediate goals are defined which serve to estimate
the desired properties of the final feed.
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Other than beamwidth and return loss, the circular symmetric feed is optimized
for two objectives: 1) Low cross polarization and 2) small reflection into the coaxial
guide. The first objective is added because cross polarization can easily arise in
the 45¶ plane from circular symmetric structures. This cross polarization will be
transformed to the far field and cannot be compensated by the TE

21

radiation. The
second objective serves to ensure that the TE

21

modes generated by the coupler can
get out of the coaxial waveguide, so they can be radiated by the horn. A transition
into another waveguide geometry or free space gives rise to reflections which must
be kept low. Otherwise, the TE

21

modes are reflected back and forth in the coaxial
section, destroying the phase relationship with TE

11

mode in the circular guide.

5.4.3 Reflection From Coaxial Guide
The couplers designed using the above method have a relatively narrow coaxial region.
This is a consequence of the aim to match the cuto� frequencies of TE

11

and TE
21

in the circular and coaxial guide, respectively. A narrow coaxial waveguide like this
is not a good radiator [96, 97]. The blue curve in Figure 5.10 plots the reflection of
a coaxial waveguide port excited by the TE

21

coaxial mode. The dimensions used
are the ones from the coupler design in Section 5.3. More than half of the power
is reflected back into the coaxial waveguide in the entire band of interest, which is
useless in practice.

The reflection can be mitigated by flaring the coaxial waveguide towards the
aperture. The orange curve in Figure 5.10 plots the reflection of the same coaxial
mode when a simple linear flare is added. Reflection below ≠10 dB is obtained by
optimizing the dimensions of the linear flare2. Better results are possible with a more
advanced spline flare, but the linear flare illustrates the point well enough.
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Figure 5.10: Reflections of a coaxial waveguide: with no alterations
(blue), with a simple flare (orange), and with a flare and an axial cor-
rugation (green). The inset figures show a quarter of the rotationally
symmetric devices. The inner coaxial radius is 11.1 mm and the outer
is 13.6 mm. The unshaded area is the frequency interval of interest.

The last curve of Figure 5.10 (green) is the reflection when a typical axial corruga-
tion is added outside the flare. The corrugation severely deteriorates the performance.

2The resulting dimensions are: a flaring of 10 mm over a length of 5.0 mm followed by a straight
section 1.5 mm long.
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The reason for this can be regarded as too sharp a transition in the surface impedance
seen by the coaxial mode. The same is true in radially corrugated horns, where the
transition from smooth to corrugated regions is performed gradually. A common way
to do this is to start the corrugations at half a wavelength and decrease to a quarter
over a few corrugations, see e.g. [98] or [99, Sec. 3.6]3.

It is possible to optimize the geometry to obtain good reflection characteristics
from the coaxial region, while sticking to the axially corrugated horn topology. An
example is given in Figure 5.11, where by a combination of smooth flare, steps, and
tuning of corrugation depths, a reflection performance around ≠25 dB is achieved
across the entire band. Irises in the coaxial region can also be used as matching
elements [96, 100, 101], though since the waveguide is very narrow here, some flaring
would be necessary.
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Figure 5.11: Reflection from the coaxial input with an axially cor-
rugated horn. Transition and first corrugations optimized for low re-
flection. The unshaded area is the frequency interval of interest. The
generating curve of the circular symmetric horn is shown in the inset.

5.4.4 Co-Polar Radiation Radiation Characteristics
Let us consider what the e�orts to achieve low coaxial reflections did to the co-polar
radiation pattern. The optimized geometry shown in Figure 5.11 is now excited from
the circular input port instead of the coaxial, and the coaxial guide/corrugation is
terminated at the bottom with PEC. The radiation patterns at selected frequencies
within the range of interest are plotted in Figure 5.12. Needless to say, these are very
unsatisfactory. The cross polarization is high, the patterns are too broad, and exhibit
varying dip in the boresight direction.

The variation e�ect that we observe in the beam, is due to TE
11

mode being
coupled into the long corrugation, reflected at the back, and radiating. The long
electrical length of the corrugation results in wildly varying phase of this reflected
TE

11

wave at the aperture. At some frequencies it is approximately in phase with the
mode in the circular guide (e.g. 14 GHz) and out of phase at others (e.g. 11.5 GHz). It
causes peaks or dips in the boresight direction, respectively. When it is out of phase

3The reason that one does not gradually increase the depth of the corrugations, is that the
surface would represent an inductive longitudinal surface impedance which gives rise to some ugly
surface-wave-like field solutions. It is the same phenomenon which makes these types of surfaces
undesirable for matched feeds — see Section 6.3.
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a peak is formed o�-axis due to the displacements of the sources (See Figure 2.6 in
Chapter 2). In [22], this di�culty does not arise, since the coaxial region is only
a quarter wavelength long and therefore works as a standard choke on the circular
waveguide opening.
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Figure 5.12: Radiation patterns of the horn shown in Figure 5.11 at
selected frequencies. Only the 45¶ plane is shown. Solid lines are co-pol
and dashed lines are cross-pol.

The dip in the boresight direction and broad pattern is sometimes sought in
symmetrical single reflector antennas with small f/D values, so-called deep reflectors
[102, Sec. 7.8]. In those geometries the dip in the main beam helps alleviate some
of the feed blockage e�ect. A small dip in the feed beam is not categorically a
disadvantage in the case of an o�set reflector, but the beamwidth and high cross
polarization in these patterns definitely are.

5.4.5 Balancing Objectives
Naturally, optimizing only one of the objectives as above is naive. The two objectives
must be optimized together to find the best compromise and hopefully satisfy all the
requirements.

Unfortunately, it has proven exeedingly di�cult to achieve this with our chosen
topology over the full band of the coupler. The objectives are simply pulling the
parameters in opposite directions. The goal of low TE

21

reflection tends to benefit
from a large flaring of the first corrugation (the one with the coupler) and a bit longer
second corrugation. It also benefits from letting the inner guide protrude into the
horn. On the other hand, co-polar pattern su�ers from the long corrugations and the
protrusion means that the full horn aperture is not used e�ciently, thus decreasing
the directivity.

It seems that, over a large bandwidth, the long corrugation housing the coupler will
always deteriorate the co-polar radiation pattern and in some cases the return loss.
The only solution is to somehow isolate the two. In [103] and [104] circular/coaxial
horns are presented where the circular and coaxial regions are separate radiators. In
the latter, the regions radiate two distinct signals at di�erent frequencies, while the
former is more related to the present task with the same signal in both regions.

Performing the same trick in our case would entail flaring the inner circular guide
to a spline shaped [105] or corrugated horn of its own. The coaxial region would have
to be even wider. This approach poses a serious problem in our case, because the wall
of the inner waveguide is thin, and the whole inner structure must carry itself all the
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way from the start of the coupler. Supporting the inner waveguide by a dielectric rod
or pipe could solve this problem at the cost of added complexity and reduced power
handling capabilities.

A compromise may be possible by attaching a single small choke between the inner
guide and the long coaxial guide similarly to what is done in [106] to separate a circular
and coaxial guide. This would also remove the influence of the outer corrugations,
thus limiting the achievable directivity. Therefore, the outer corrugations would be
dropped and the feed could only be used in very compact systems, where a wide beam
is needed.

5.4.6 Matched Feed Design in K
u

Uplink Band
The coupler evaluated in Section 5.3 covers the entire K

u

downlink and uplink band
from 10.7 GHz to 14.5 GHz — a 30 % fractional bandwidth. As outlined above, the
horn topology chosen here cannot match this bandwidth. However, in order to vali-
date that the concept works, we shall design a horn which compensates cross polar-
ization in the uplink band only.

The uplink K
u

band will here be taken as 13.75 GHz to 14.5 GHz — a 5.3 %
fractional bandwidth. An f/D = 0.8 reflector system is used: D = 1 m aperture,
f = 80 cm focal length, and DÕ = 5 cm clearance.

At this narrower frequency range, the two aforementioned objectives can both be
met with the axially corrugated horn topology. The horn is made to fit the dimensions
of the coupler from Section 5.3. When the horn geometry has been optimized, the
coupler is attached instead of the dummy unperforated section. Now the secondary
pattern of the reflector system is optimized to achieve low cross polarization within
the angular region ◊ œ [≠1.5¶, 1.5¶]. The scattering parameters of the coupler are
saved between iterations, such that it does not need to be recalculated when only the
outer horn is changed. This drastically reduces the computation time of an iteration,
since the coupler must be calculated with a full 3D simulation whereas the rest of the
horn is circularly symmetric and calculated with BoR MoM. The geometry resulting
from the optimization is shown in Figure 5.13.

Generating curve

Figure 5.13: Fully assembled matched feed. The coaxial coupler is
colored green, the horn section blue, and bottom termination red. The
2D generating curve is shown above the structure.

The bottom of the corrugations have been rounded in order to somewhat suppress
resonances in the system arising from specific characteristic dimensions. The perfor-



58 Chapter 5. Directional Waveguide Couplers for Matched Feeds

mance is represented in Figures 5.14 and 5.15 showing the cross-polar discrimination
and patterns, respectively. Over the optimized band, the improvement compared to
the same horn without coupler is better than 10.6 dB. Compared to a perfectly po-
larized Gaussian beam feed, the improvement is better than 9.6 dB everywhere for
both polarizations.

As previously discussed, the long first corrugation housing the coupler makes it
di�cult for the co-polarized input to make use of the full horn aperture. This is also
the case for this design: the directivity becomes too low for an f/D of 0.8 and the
spillover e�ciency su�ers. In order to avoid this, the directivity should be improved,
or the feed must be used in more compact systems, e.g. f/D = 0.5.

13.0 13.5 14.0 14.5 15.0

Frequency [GHz]

�36

�34

�32

�30

�28

�26

�24

�22

M
ax

cx
-p

ol
fr

om
p
ea

k
[d

B
]

Matched, HOR

Matched, VER

Unmatched, HOR

Unatched, VER

Gaussian feed

Figure 5.14: Maximum cross polarization within ◊ œ [≠1.5¶, 1.5¶]
compared to peak co-polar directivity. The values for the horn without
coupler and a perfectly polarized Gaussian beam feed are shown for
reference.
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(b) Vertical polarization

Figure 5.15: Secondary patterns of the reflector with the optimized
horn. 0¶, 45¶, and 90¶ cuts are plotted for nine frequencies across the
band 13.75 GHz to 14.5 GHz. Co-polar radiation is in full lines, cross-
polar is in dashed lines. The cross polarization of the system with an
unmatched feed is indicated in dashed grey within the ◊ œ [≠1.5¶, 1.5¶]
range.
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5.5 Summary

This chapter outlines a novel method for matched feed design. If near-equal cut-
o� between input and compensating modes can be achieved, distributed directional
coupler techniques can be used for wideband, high quality mode conversion.

The condition is achieved by tailoring the dimensions of a circular waveguide sur-
rounded by a coaxial one. In this situation, the TE

21

mode in the coaxial guide
travels at the same phase velocity as the TE

11

mode in the circular, allowing cou-
pling between the two to happen gradually along the length of the waveguides. A
novel technique is presented which by proper placement of coupling holes around the
circumference ensures that only desired TE

21

modes are coupled — in simultaneous
dual polarization.

The semi-analytical design procedure is shown to yield excellent results, and be
able to couple dual polarization compensating modes with stable amplitude and phase
over an unprecedented bandwidth of 30 %.

Substantial challenges in converting the waveguide modes into a radiated field have
been discussed. The long coaxial corrugation causes a disturbance of the radiated field
from the circular guide, and prevents wideband coupling to an axially corrugated horn
section. Intrinsic reflection from an open ended narrow coaxial waveguide must be
treated at the same time. In spite of this, a matched feed horn is designed for the K

u

uplink band which reduces the cross polarization of the reflector system by 10 dB. It is
thereby proven that the coaxial coupler may be used for matched feeds. Widening the
bandwidth of the coupler to free space transition is a topic for further development.





CHAPTER 6
Impedance Surface

Waveguides for Matched
Feeds

As established in the preceding chapter, it is desirable if compensating modes prop-
agate at phase velocities close to that of the input mode. Not only does it eliminate
the phase drift toward the horn aperture, but also allows mode conversion to be
distributed along the length of the feed.

The motivation behind the work presented in this chapter is therefore the same
as the motivation for the coaxial geometry: to control the propagation such that the
main and compensating modes have similar dispersion characteristics. This is possible
by using anisotropic impedance-surface lined waveguides for the matched-feed horns.
The theoretical background for cylindrical waveguides of circular cross-section with
impedance wall is summarized in Appendix B.2.

The impedance surfaces we shall deal with in this chapter are characterized by two
impedances, which define the ratio of E- and H-fields on the surface. The longitudinal
impedance is defined as

≠ E
z

H
„

= Z
z

= R
z

+ jX
z

, (6.1)

and the transverse, or „-directed impedance which reads
E

„

H
z

= Z
„

= R
„

+ jX
„

, (6.2)

where R’s and X’s are the respective resistance and reactance values. When these
boundary condition apply at the walls of the waveguide, the field solution cannot in
general be split into TE and TM mode solutions. The solutions which satisfy these
conditions and contain both E- and H-fields in the longitudinal direction are termed
hybrid modes.

6.1 Impedance-Surface Waveguides in the Literature

The early developments of anisotropic impedance-surface waveguide theory is cen-
tered around waveguides and horns with radially corrugated walls. This allowed con-
struction of horns with very low cross polarization and symmetric patterns. When
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the corrugations are at resonance, i.e. one quarter wavelength deep, the longitudinal
impedance seen inside the waveguide is infinite while the transverse („-directed) is
still zero. This allows for propagation of hybrid modes under the balanced condition
(see Appendix B.2) which exhibit low cross polarization. Early contributions to the
analysis of corrugated waveguides and horns include [107–116]. These references cul-
minate in a book by Clarricoats and Olver [99], which is a comprehensive study of
the theory and design of corrugated feed horns.

Siblings of the radially corrugated horns are the so-called hard horns. A term
coined by Kildal [117] along with soft horns representing the radially corrugated ones.
On the hard surface, the anisotropic impedances are zero longitudinal and infinite
transverse impedance, i.e. switched compared to the soft surface. These impedances
also support hybrid modes under the balanced condition with low cross polarization.
An advantage of the hard horns, is that a TEM mode is supported. The TEM
mode has no taper towards the edge of the waveguide and therefore, in principle, the
horns can have 100 % aperture e�ciency which is useful in focal plane arrays. Other
references on hard horns are [118, 119].

Standard metal walled waveguides with losses included are also impedance waveg-
uides. Naturally, the surface impedances are not anisotropic, but in general, hybrid
modes are needed to satisfy the boundary conditions when the walls are lossy. Litera-
ture treating modes in waveguides with lossy walls include [120, 121], though Dragone
[121] also treats anisotropy.

Cylindrical waveguides with arbitrary cross-section and general anisotropic sur-
face impedances were treated in [122]. Unger employs the theory principally for
helix waveguides. It is later pointed out in [123], that for noncircular waveguide
cross sections, coupling between modes occurs in the impedance waveguide. Other
authors Dragone [121], Bernardi [124], Andersen [125], Elsherbeni and Hamid [126],
and Elsherbeni et al. [127] also treat various aspects of general impedance waveguides.
A good general derivation is also given in Mahmoud [128].

Thomas and Minnett [129] conduct a detailed study on circular cylindrical waveg-
uides with general anisotropic impedance walls. Dispersion diagrams are shown for
surface impedance pairs of interest and several observations on limiting cases are
made. They also introduce the so-called hybrid factor,“, which measures the ratio of
longitudinally directed E- and H-fields. Thomas and Minnett define the HE and EH
hybrid modes from the sign of the hybrid factor, a convention which has been carried
on in the majority of the literature on impedance and corrugated waveguides. Raveu
et al. [130] recently made a similar study also including rectangular waveguides.

As for specific applications utilizing waveguides with impedance walls, there are
many works on corrugated horns, academic as well as industrial. However, there are
also references on other kinds of anisotropic impedance surface horns. One concept
which is of interest, is other combinations of the surface impedances which gives rise to
the balanced hybrid condition. Namely the ones which lie between the two extremes
of soft and hard horns. Wu et al. have designed several horns based on nonresonant
surfaces, which aim at the balanced condition, but not necessarily hard or soft [131–
136]. They demonstrate that their surfaces can satisfy the hybrid condition over
a large bandwidth. Capet et al. [137] also aim to implement the balanced hybrid
condition, but in order to reduce the cuto� size of waveguides.

6.2 Dispersion Diagrams

When dealing with problems that have modal solutions, dispersion diagrams are often
used. They link frequency and phase constant for each modal solution. There are
a few ways to represent them. In optics, the phase constant is often put on the
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primary axis and the frequency/free space wavenumber on the secondary axis. In the
electrical engineering community, we like the frequency on the primary axis. In the
present chapter, we shall represent the dispersion diagrams as follows: the free space
wavenumber times waveguide radius on the primary axis (ka) and phase constant
times radius secondary axis (—a). The condition that k = — is indicated in each
plot and denoted the light line. Modes below the light line have a phase propagation
faster than the speed of light and are therefore denoted fast waves. Conversely, modes
above the light line are denoted slow waves as their phase propagation is slower than
the speed of light. The dispersion diagram of a PEC waveguide shown previously in
Figure 2.9 has only fast waves which are either TE or TM.

6.3 Simultaneous HE1 and HE2 propagation

For matched-feed applications we are interested in simultaneous propagation of the
fundamental mode and a higher order mode to compensate the cross polarization.
Already in the first paper by Rudge and Adatia [6], the HE

21

mode is mentioned
for matched feed operation in a corrugated horn. None of the above references in-
clude simultaneous propagation of the HE

11

and HE
21

modes in general impedance
waveguides. In this section, we shall focus only on impedance pairs which satisfy the
balanced hybrid condition as detailed in Appendix B.2, namely

X
z

X
„

= ≠Z2

0

, x
z

x
„

= ≠1, (6.3)

or equivalently

Z
z

Z
„

= Z2

0

, z
z

z
„

= 1, (6.4)

where the uncapitalized quantities are normalized with the free space impedance, e.g.
z

z

= Z
z

/Z
0

. We fix just one of the surface reactances/impedances, and the other will
follow. Figure 6.1 shows dispersion plots for several balanced surfaces. Blue curves
are m = 1 modes and orange curves are m = 2 modes. Dotted lines correspond to
balanced EH modes (“ = ≠1) and full lines to balanced HE modes (“ = 1).

The top left plot, Figure 6.1(a), corresponds to the impedance of a corrugated
surface at resonance: X

z

= Œ and X
„

= 0. This is the surface sometimes referred
to as soft [138]. For the matched feed application, we are interested in the first HE

1

and HE
2

modes — the ones which are at cuto� circa ka = 2 and ka = 3, respectively.
The main problem with this configuration is that the di�erence in phase constant
between the two modes of interest changes heavily with frequency, just as in the PEC
waveguide.

Figure 6.1(b) represents normalized reactances (x
z

, x
„

) = (1, ≠1). Slow waves
dominate as well as simultaneous HE and EH propagation in the fast region. This
configuration is undesirable for horn applications as is also noted by Thomas and
Minnett [129] (although they missed the slow waves).

More interesting are the two bottom plots of Figure 6.1. In Figure 6.1(d) a waveg-
uide with the hard boundary condition [138] is shown. As mentioned by Kildal [138],
this type of waveguide supports a TEM mode with no cuto� and uniform field distri-
bution. This is also true for m = 2 modes and they both lie on the light line with the
same propagation constant as the free space wavenumber (one hidden by the other).
Since the two desired modes have the same phase constant at all frequencies, this con-
figurations seems highly desirable. The problem is that the implementation of infinite
transverse reactance is a resonance phenomenon, and therefore narrowband, which
is also mentioned in [138]. However, this is not necessarily true for the impedance
in the bottom left corner. Figure 6.1(c), which also shows promising propagation
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Figure 6.1: Dispersion diagrams for di�erent balanced surface
impedances, i.e. x

z

x
„

= ≠1. Blue curves are m = 1 modes and or-
ange curves are m = 2 modes. Stars correspond to balanced EH modes
(“ = ≠1) and dots to balanced HE modes (“ = 1).

characteristics: The di�erence in HE
11

and HE
21

propagation constant changes much
less with frequency than for the soft surface. The balanced impedance pairs which
lie in the range between the cases in the two bottom plots will be investigated in the
following section.

6.4 Capacitive X
z

and Inductive X
„

As mentioned in the previous section, it is of interest to look further into the solution
space under the balanced hybrid condition between the cases of (≠1, 1) and (0, Œ).
We let x

z

go from ≠1 toward zero while enforcing the balanced hybrid condition

x
z

x
„

= ≠1. (6.5)

Three cases are shown in Figure 6.2. The reactances are capacitive (negative) in the
z-direction and inductive (positive) in the „-direction. All the cases exhibit better
performance than the soft surface case, i.e. the dispersion lines are more parallel and
they are closer. When x

z

= ≠0.1 (Figure 6.2(c)), the HE
11

and HE
21

curves are
practically equal.

These are idealised impedances. A practical (non-PEC) surface would never ex-
hibit the same impedance over such a large frequency band. Luckily that is not
required as we only need the surface to be in the ballpark of small capacitive longi-
tudinal impedance and larger inductive transverse impedance, while being approxi-
mately balanced. But is this practically realisable? Considering the horns produced
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Figure 6.2: Dispersion plots for di�erent balanced surface impedances,
i.e. x

z

x
„

= ≠1. All four cases are with a capacitive reactance in the z-
direction and thus an inductive reactance in the „-direction. Blue curves
are m = 1 modes and orange curves are m = 2 modes. Dotted lines
correspond to balanced EH modes (“ = ≠1) and full lines to balanced
HE modes (“ = 1).

by Wu et al. [132–135], the impedances they arrive at are quite close to this condition.
Their goal for optimization is just the balanced condition, but the result happens to
be capacitive in the longitudinal direction and inductive in the transverse over a large
bandwidth.

6.5 Impedance Surface Matched Feed Design

Let us take outset in the work of Wu and his colleagues and assume that we can
successfully impose the extra design goal that the longitudinal reactance is small (see
Figure 6.2). Then we will have a piece of waveguide or flared horn in which HE

11

and HE
21

propagate at nearly the same phase velocity.
First of all, in the classical matched feed structure, the mode launcher is placed

at the beginning of the horn, before the flare. If the mode launcher is followed by
a significant length of regular metallic waveguide, the phase di�erence between the
fundamental and compensating mode will vary with frequency. This can be totally
avoided with an impedance surface waveguide of this kind.

However, making the mode launcher in this type of waveguide is even more ad-
vantageous. When the phase velocities are nearly equal, the distributed directional
coupler technology can be used to excite the higher order mode, as discussed in
Chapter 5. In the impedance waveguide case, the two modes would exist in the same



66 Chapter 6. Impedance Surface Waveguides for Matched Feeds

waveguide and not in separate ones as with the coaxial coupler, but the concept is the
same. Mode launching would consist of small nonresonant inclusions, which enhance
the operating bandwidth as in the case of the coaxial coupler. The mode launcher
might then be followed by a flared section or incorporated into it.

Wu et al. [132–136] have demonstrated that this kind of metasurface structures
are indeed realizable over significant bandwidths. The main reason for this is, that
the elements do not have to be resonant.

6.5.1 Validation
Rudge and Adatia [6, 32] state that the HE

21

mode in a corrugated waveguide can be
used in matched feeds and it has been proven by several authors [17–19]. It will now
be verified that the hybrid modes supported by the impedance waveguides presented
in this chapter are also suitable for matched feed design. Figure 6.3 shows radiation
patters of the HE

11

and HE
21

modes from an impedance waveguide with normalized
reactances x

z

= ≠1 and x
„

= 1. The patterns are computed by first evaluating the
transverse E- and H-fields of the hybrid modes from the formulas in Appendix B.2
and finding the equivalent magnetic and electric currents, respectively. The currents
are numerically integrated to find the patterns by GRASP.

The HE
11

mode radiates virtually no cross polarization and the pattern is almost
perfectly Gaussian. The aperture e�ciency, and therefore gain, is higher than would
be the case for a soft surface HE

11

mode, at the expense slightly higher side lobes.
The HE

21

mode exhibits the cross polarization lobes which we require to cancel out
the cross polarization induced by the feed tilt. This is confirmed in Figure 6.4 where
the secondary pattern of a standard reflector system is evaluated before and after the
addition of HE

21

. Cross polarization is reduced by 17 dB in this case.
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Figure 6.3: Radiation patterns of HE
11

and HE
21

hybrid modes from
an impedance waveguide of radius a = 25 mm with wall reactances
x

z

= ≠1 and x
„

= 1. The cut shown is „ = 0¶ where the HE
21

mode is
purely cross polarized. The HE

11

radiates almost no cross polarization
in any plane. The patterns are evaluated at 13 GHz and calculated from
numerical integration of the aperture E- and H-fields in GRASP.

6.6 Summary

In this chapter an investigation of the applicability of anisotropic impedance waveg-
uides to matched feed design is presented. The essential goal of choosing other guiding
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Figure 6.4: yz-o�set reflector system with f/D = 0.8 illuminated by
the hybrid modes of Figure 6.3. The left plot is of pure HE

11

illumi-
nation, i.e. virtually zero cross polarization of the feed. The right plot
shows how the feed tilt can be compensated by addition of ≠18.5 dB
HE

21

in phase quadrature. The cross polarization is shown in both
„ = 0¶ and „ = 45¶

structures than the PEC waveguide, is to eliminate the phase dispersion of the com-
pensating mode relative to the fundamental one. To this end, it is desired that the
di�erence in phase constant of the two modes is stable with frequency, or even better,
that the phase constants are the same. It is found that the traditional soft sur-
face waveguides and horns provide little improvement in this regard. However, other
impedance surfaces exhibit much more promising characteristics with almost parallel
dispersion lines and approaching equal phase constants. These surfaces are char-
acterised by capacitive longitudinal reactances and inductive transverse reactances.
Horn antennas designed, and tested, with these kind of surfaces have recently been
published in the literature, though not for matched feed purposes.





CHAPTER 7
Conclusion

This study is concerned with identifying the reasons for and alleviating the bandwidth
limitation of matched feed antennas for o�set reflectors.

Matched feeds have seen some activity in the literature, however, none of the
references provide a satisfactory account of all the aspects of the design process.
For example, the so-called mode launchers of matched feeds are always presented
without any motivation as to their design. Therefore, this work thoroughly describes
the workings of these devices, such that basis can be made for improving them.
Additionally, a new method is presented for determining the waveguide modes needed
for matched feeds under varying geometrical setups. In the process, it is found that
modes other than the previously employed ones, can be used.

Regarding the bandwidth limitations of existing matched feed antennas, two main
culprits are identified: modal dispersion in waveguides and resonance e�ects of mode-
launcher inclusions. Three strategies have been pursued to address these problems:

1. Optimization methods and limitation of waveguide horn length [P1].

2. Equalizing phase velocities by propagating higher order modes in a coaxial
waveguide [P4].

3. Equalizing phase velocities by employing waveguides with engineered surface
impedance [P3].

By careful design in several optimization steps, the first approach allowed us to
achieve an unprecedented bandwidth for a dual-polarized matched feed. However, this
approach does not solve the fundamental problem, only squeezes as much performance
as possible out of the existing technology.

The second approach is based on the fact that while higher order modes in a
single PEC waveguide will always have di�erent cuto�s than the fundamental one,
this is not true if the modes propagate in separate waveguides. It turns out that the
dimensions of a coaxial waveguide surrounding a circular one can be tuned such that
the TE

21

mode has the same cuto� frequency as the TE
11

mode in the circular guide,
meaning that the two travel at the same speed for all frequencies. This property gets
rid of the modal dispersion, but also enables the mode coupling to be distributed
along the length of the waveguides.

The design of the coaxial coupler combines several elements: extensive use of
the framework for mode launcher analysis, directional coupler design concepts, and
again, optimization. With the presented method mode launchers working in dual
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polarizations over a 30 % bandwidth can be designed. Horn antennas which may be
fitted to the coaxial coupler mode launcher have also been investigated. It proven
that the concept can be used for dual polarized matched feeds, though the horn design
is now the bottleneck for very wideband operation.

By the same reasoning as with the coaxial geometry, it is uncovered that impedance
surface, or metasurface, horns are promising for matched feeds. An analysis of higher
order waveguide modes in impedance waveguides shows that for a certain range of
materials, HE

11

and HE
21

hybrid modes propagate at almost equal speeds in the
waveguide. This means again, that modal dispersion is eliminated, and that coupling
can be distributed as with the coaxial coupler. The impedance surface approach
has the advantage over the coaxial coupler one that only a single waveguide region is
needed, thus simplifying the horn design. Of course, the actual surface and its method
of manufacture must be determined. By how much this complicates the design is still
unknown, but promising results are published in the literature.

The matched feed designs in the literature have been almost exclusively single
polarized. It seems that for real applications, reflector feeds are often required to be
dual polarized. Using the framework for mode launcher analysis presented here, it is
relatively straight forward to make a design which generates only the correct higher
order modes for inputs of both polarizations. All designs presented in this study are
therefore dual polarized1.

This study has resulted in new insights into the technology referred to as matched
feeds. These insights are used to provide novel methods to widen the achievable
bandwidth, thus incrementing state-of-the-art. Many challenges still remain in this
field. In my opinion, there are some very interesting paths to pursue further. Other
horn topologies must be investigated in order to utilize the full bandwidth of the
coaxial coupler and possibly a increase the directivity. The impedance surface horns
for matched feeds need to be further matured by design of specific surfaces, directional
coupler coe�cients, and inclusions. The directional coupler framework for mode
launcher synthesis is not limited to the coaxial or impedance surface waveguide, it can
be readily applied to any guiding configuration. It would for example be interesting to
apply distributed mode coupling along the length of a corrugated horn with hundreds
of sub-resonance inclusions.

1Except the TM01 demonstrator design in Appendix A.



APPENDIX A
TM01 Matched Feed

In the following it shall be validated that the TM
01

mode can be used in a circular
matched feed instead of a TE

21

mode. An example design is presented which, though
relatively narrow band, substantially reduces cross polarization of an f/D = 0.6
reflector without generating any TE

21

modes.
The feed is not intended to compete with other designs and shown here only as

a demonstrator. Should a wideband matched feed be attempted, we would have to
find an alternative to the augmented Potter horn topology. Naturally, the design is
also single polarized, as only the TM

01

mode is employed.

A.1 Design

The design is optimized for a single frequency of 5 GHz. The reflector system which
the feed is meant for is summarized in Table A.1. It is a quite severely o�set system
with a focal length to diameter ratio of 0.6 and a feed tilt of nearly 60¶.

Symbol Value

Frequency - 5.0 GHz
Focal length f 1.2 m
Aperture diameter D 2.0 m
Clearance DÕ 20 cm
f over D f/D 0.6
Feed tilt ◊

f

57¶

F

D

f

DÕ

◊

ú

◊

ú

◊f

◊

0

Table A.1: Parameters of the antenna measured in [3].

The design is carried out much like a classic matched feed design with TE
21

modes.
The di�erences are in the mode launcher, which we shall come back to, and in that
the waveguide section following it does not support TE

21

. The topology is shown in
Figure A.1 and is very similar to the one shown in Figure 2.7. Below, the cuto� radii
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of the first few modes in a circular waveguide at 5 GHz are listed. The first section
must propagate only TE

11

, the second section only TE
11

and TM
01

, and the final
section must allow TM

11

for the Potter-horn e�ect.

TE
11 +TM

01 +TM
11

a
1

a
2

a
3

a
o

l
1

l
2

l
flare

TE
11

TM
01

TE
21

TE
01

/TM
11

17.57 < a
1

< 22.95 < a
2

< 29.15 36.56 < a
3

Figure A.1: Topology of the TM
01

matched feed. Below it, the cuto�
radii in mm of waveguide modes in a circular waveguide at 5 GHz are
listed. The proper intervals of the horn sections are indicated.

A.1.1 Mode Launcher
The mode launcher is designed by inspection of Figure 4.6. TM

01

generation may be
achieved by placing pins anywhere on either the top or bottom half of the waveguide.
Placing pins in both halves would result in destructive interference. It is evident that
other modes will be generated, but these will decay in the following waveguide section
due to our choice of a

2

. Four pins are placed symmetrically around „ = 90¶ so as to
avoid any one pin having to be too long. The configuration is shown in Figure A.2(a).

(a) Mode Launcher (b) Full feed

Figure A.2: Finished design. (a): The TM
01

mode launcher seen from
the front. The first pin is at „ = 60¶ and there is a 20¶ spacing between
pins. (b) A rendering of the assembled matched feed.
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A.1.2 Procedure
The design procedure employed here is quite simple. The following steps involving
engineering decisions, manual adjustment, and numerical optimization are taken:

1. Consult Figure 3.4 to determine approximate TM
01

amount required: V TM

01

¥
0.2.

2. Fix a
1

and a
2

and adjust pin lengths (l
pin

) until desired TM
01

is generated.

3. Optimize Potter horn part of the feed for low cross polarization and appropriate
edge taper. Variables are a

3

, l
2

, l
flare

, and a
o

.

4. Assemble mode launcher and Potter horn. Adjust l
1

until TM
01

is approxi-
mately 90¶ ahead of TE

11

in the aperture.

5. Optimize reflector far field for low cross polarization with l
1

and pin length as
variables.

Note that since TM
11

does not propagate in the section where the radius is a
2

,
we can adjust the TM

01

phasing length, l
1

, without a�ecting the properties of the
Potter horn. The design works without the last optimization, but can be significantly
improved by including it. One reason is that the phase center of the horn is not
exactly at the aperture.

The simulation method splits the horn into four parts: 1) mode launcher 2) the
circular symmetric step (including waveguide sections before and after), 3) the horn
flare, and 4) The transition to free space. Only the mode launcher part needs to be
calculated with 3D MoM; the step is calculated with mode matching and the last
two parts with Body of Revolution MoM. The parts are connected via waveguide
ports and generalized scattering matrices. Therefore, only steps 2 and 5 in the above
procedure require 3D calculations.

A.2 Results

The dimensions resulting from the above procedure are listed in Table A.2. Note that
the radii are in the intervals as dictated in Figure A.1.

The reflector far-field pattern at the design frequency is shown in Figure A.3(a).
The cross-polar lobes using a perfectly polarized Gaussian beam feed are shown for
reference. The reduction in maximum cross polarization is 17 dB. The cross po-
larization level relative to peak as a function of frequency is shown to the right in
Figure A.3(b). As expected, the design is relatively narrowband with a 10 dB reduc-
tion bandwidth of 2.2 %.

In order to validate that we have not just inadvertently made a regular matched
feed, mode content in the aperture is evaluated. Figure A.4 shows the amount of
TE2

11

, TE1

21

, and TM
01

modes in the aperture. The TE
21

mode is less than ≠55 dB
at the design frequency and will hardly influence the pattern of the feed at all. The
other TE

21

mode content is well below ≠100 dB and not shown here.



74 Appendix A. TM
01

Matched Feed

[mm]
a

1

21.0
a

2

25.0
a

3

36.7
a

o

56.0
l
1

79.9
l
2

75.2
l
flare

147.5
l
pin

10.2

Table A.2: Final dimensions of the design.
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Figure A.3: Cross-polar performance of the TM
01

matched feed. (a):
Reflector radiation pattern in asymmetry and diagonal planes. Cross
polarization of a Gaussian beam feed is indicated in grey. (b): Cross
polarization relative to peak directivity as a function of frequency.
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APPENDIX B
Waveguide Modal Analysis

This appendix holds some reference derivations and formulas regarding waveguides.
The first part is concerned with general waveguides with general anisotropic impedance
surfaces. Then we move on to circular waveguides of general surfaces before lastly
specializing to PEC circular waveguides.

The methods presented in Section B.2 is the basis of the results in Chapter 6.

B.1 General Cylindrical Waveguides

A cylindrical waveguide does not mean a circular waveguide, but a waveguide whose
(general) cross-section does not change along one direction. In the literature, the
term cylindrical waveguide is often confused with a circular cylindrical waveguide.
A rectangular waveguide is also a cylindrical waveguide, with a rectangular cross-
section.

B.1.1 Decomposition in Transverse and Longitudinal
Components

Maxwell’s curl equations in a source free, simple medium read

Ò ◊ E = ≠jÊµH (B.1a)
Ò ◊ H = jÊ‘E. (B.1b)

Now let

Ò = Ò
t

+ ẑ

ˆ

ˆz
(B.2)

E = E
t

+ ẑE
z

(B.3)
H = H

t

+ ẑH
z

(B.4)

which is inserted into (B.1) to yield
I

(Ò
t

+ ẑ

ˆ

ˆz

) ◊ (E
t

+ ẑE
z

) = ≠jÊµ(H
t

+ ẑH
z

)
(Ò

t

+ ẑ

ˆ

ˆz

) ◊ (H
t

+ ẑH
z

) = jÊ‘(E
t

+ ẑE
z

)
(B.5)

∆
I

Ò
t

◊ E
t

+ Ò
t

◊ ẑE
z

+ ˆ

ˆz

(ẑ ◊ E
t

) = ≠jÊµ(H
t

+ ẑH
z

)
Ò

t

◊ H
t

+ Ò
t

◊ ẑH
z

+ ˆ

ˆz

(ẑ ◊ H
t

) = jÊ‘(E
t

+ ẑE
z

)
(B.6)
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Crossing with ẑ, the longitudinal terms cancel, and we obtain

∆

Y
__]

__[

ˆE
t

ˆz
= jÊµ(ẑ ◊ H

t

) + Ò
t

E
z

ˆH
t

ˆz
= ≠jÊ‘(ẑ ◊ E

t

) + Ò
t

H
z

(B.7)

We can go two ways from here. Let us start by obtaining equations in the transverse
components. To this end, we find E

z

and H
z

from the standard form of Maxwell’s
equations (B.1), namely

≠jÊµH
z

= ˆE
y

ˆx
≠ ˆE

x

ˆy

= Ò
t

· (E
t

◊ ẑ) (B.8a)

and

jÊ‘E
z

= Ò
t

· (H
t

◊ ẑ). (B.8b)

Inserting into (B.7) yields
Y
__]

__[

ˆE
t

ˆz
= jÊµ(ẑ ◊ H

t

) + j

Ê‘
Ò

t

Ò
t

· (ẑ ◊ H
t

)

ˆH
t

ˆz
= ≠jÊ‘(ẑ ◊ E

t

) + j

Êµ
Ò

t

Ò
t

· (E
t

◊ ẑ)
(B.9)

or in dyadic form
Y
__]

__[

ˆE
t

ˆz
= jÊµ

3
I + 1

k2

Ò
t

Ò
t

4
· (ẑ ◊ H

t

)

ˆH
t

ˆz
= jÊ‘

3
I + 1

k2

Ò
t

Ò
t

4
· (E

t

◊ ẑ)
(B.10)

where I is the unit dyadic. Equations (B.8) and (B.10) are equivalent to Maxwell’s
equations (B.1).

Wave Solutions in z

We now consider solutions which are travelling waves in the z-direction, thus
I

E(x, y, z) = Ẽ(x, y)eûj—z,

H(x, y, z) = H̃(x, y)eûj—z,
(B.11)

and the functions Ẽ and H̃ are only functions of the transverse coordinates. This
assumption will enable us to find the transverse fields from the longitudinal ones.
Consider again Equation (B.7). We take the derivative with respect to z of the first
equation to obtain

ˆ2E
t

ˆz2

= jÊµ(ẑ ◊ ˆH
t

ˆz
) + ˆ

ˆz
Ò

t

E
z

. (B.12)

We then insert ˆHt
ˆz

from the second equation, yielding

ˆ2E
t

ˆz2

= jÊµ (jÊ‘E
t
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t

H
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) + ˆ

ˆz
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(B.13)

∆ ˆ2E
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ˆz2

= ≠k2E
t

+ jÊµẑ ◊ Ò
t

H
z

+ ˆ

ˆz
Ò

t

E
z

. (B.14)
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We now use the assumption (B.11) to replace the z derivative with ûj—:

≠—2E
t

= ≠k2E
t

+ jÊµẑ ◊ Ò
t

H
z

û j—Ò
t

E
z

∆ E
t

= j

k2

c

(Êµẑ ◊ Ò
t

H
z

û —Ò
t

E
z

) , (B.15a)

where we have used the definintion of the cuto� wavenumber k2

c

= k2 ≠ —2. A similar
derivation for H

t

yields

H
t

= j

k2

c

(Ê‘Ò
t

E
z

◊ ẑ û —Ò
t

H
z

) . (B.15b)

Thus, we can determine just E
z

and H
z

from the scalar Helmholtz equation
I

Ò2

t

E
z

+ k2

c

E
z

= 0
Ò2

t

H
z

+ k2

c

H
z

= 0,
(B.16)

and find the transverse components from these. Then the boundary conditions are
used to find relevant constants. In case of PEC walled guides, the boundary conditions
can be met by purely TE or TM solutions, i.e. E

z

= 0 or H
z

= 0, respectively. For
example, the boundary conditions for TM modes can be met by simply imposing that
E

z

= 0 on the guide wall.
For more general wall materials, hybrid modes may be required to satisfy boundary

conditions. These are solutions where neither E
z

or H
z

are zero. This topic will be
discussed further in the following section.

B.2 Circular Waveguides with Impedance Wall

Consider a cylindrical waveguide with circular cross section. The wall boundary is
impenetrable, and thus, the electric surface current is given by

J
es

= n̂ ◊ H (B.17)

where n̂ = ≠fl̂ for the circular waveguide in a usual cylindrical coordinate system.
We let the material impose a linear relation between the current and the electric field,
i.e. Ohm’s law:

E
t

= Z · J
es

(B.18)

where the surface impedance, Z, is the dyadic

Z = ẑẑZ
zz

+ „̂„̂Z
„„

+ „̂ẑZ
„z

+ ẑ„̂Z
z„

. (B.19)

Thus, the material on the guide wall imposes the following condition on the field at
the wall

E
t

= ≠ Z · fl̂ ◊ H
t

, (B.20)

and if we let the cross terms be zero, Z
„z

= Z
z„

= 0, the boundary condition reduces
to

≠ E
z

H
„

= Z
zz

= Z
z

= R
z

+ jX
z

(B.21a)

E
„

H
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= Z
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= R
„

+ jX
„

. (B.21b)
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In a PEC waveguide, both impedances Z
„

and Z
z

are zero. For an isotropic wall
surface, they are identical. In the more general anisotropic case, however, they can
be di�erent and complex. If the surface is lossless R

z

= R
„

= 0, and thus we shall
often characterize a surface only by its reactances.

The scalar Helmholtz equation in cylindrical (transverse) coordinates

Ò2

t

Â(fl, „) + k2

c

Â(fl, „) = 0, (B.22)

has solutions of the form

Â(fl, „) Ã J
m

(k
c

fl) cos
sin m„ (B.23)

where Â can be E
z

or H
z

. Thus, for a specific solution, i, we have

E
z

(fl, „) = ja
i

J
m

(k
c

fl) cos
sin m„ (B.24)

H
z

(fl, „) = ±jY
0

“a
i

J
m

(k
c

fl) sin
cos m„, (B.25)

from which it follows that

“ = Z
0

H
z

(fl, „)
E

z

(fl, „ ≠ fi

2m

) , (B.26)

the so-called hybrid factor which measures the ratio of longitudinal E- and H-fields. Z
0

and Y
0

are the free space impedance and admittance, respectively. The hybrid factor
has slightly di�erent definitions in the literature [99, 129, 130]. The one employed
here is that of [129]. The factor j on both E

z

and H
z

is chosen to ensure that the
transverse field components are real for the propagating lossless case (see Eq. (B.15)).

If the hybrid factor is zero, we have a pure TM solution, if it is infinite, we have a
pure TE solution. Anything in between is a hybrid mode, with nonzero longitudinal
components of both the electric and the magnetic field. If the hybrid factor is positive,
we denote the solution a HE hybrid mode, and if negative, an EH hybrid mode [129].
In order to determine the constants “ and k

c

, we find the transverse components
from (B.15) and insert into the boundary conditions (B.21). The transverse gradient
operator in cylindrical coordinates is

Ò
t

Â = fl̂

ˆÂ

ˆfl
+ „̂

1
fl

ˆÂ

ˆ„
(B.27)

and thus the transverse components of the field found from (B.15) are

E
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where we have chosen to look only at waves travelling in the positive z-direction. The
above expands to
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mk
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The field components are now inserted into the boundary conditions (B.21). This
yields two equations with two unknowns, “ and k

c

:
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where z
z

= Z
z

/Z
0

and z
„

= Z
„

/Z
0

are normalized surface impedances. By equating
the two, “ is eliminated, and after some manipulations, we are left with a transcen-
dental equation for k

c

:
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To obtain modal solutions, the equation is solved numerically for the cuto� wavenum-
ber, k

c

, for each free space wavenumber, k.
By multiplying with k2, we can obtain an alternate form, which is a simple

quadratic equation in the wavenumber, k:
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This equation can be solved exactly for a range of k
c

values, yielding zero, one, or
two real solutions for k. Thus, we do not need a numerical root finding algorithm as
we do if we fix k

c

and find k. However, problems arise in some situations. E.g. for
the PEC or PMC walled guide, where the characteristic equation reduces to

J
m

(k
c

a)J Õ
m

(k
c

a) = 0, (B.36)

which implies either that J
m

(k
c

a) = 0 or J Õ
m

(k
c

a) = 0, independently of k. I.e. pure
TM and TE mode solutions, respectively. This situation must be handled separately
if we solve for k. Once a solution set of k, k

c

has been found, the hybrid factor can
be evaluated from one of Equations (B.33).
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B.2.1 The Balanced Hybrid Condition
Instead of equating, we can take the product of the two Equations (B.33) for the
hybrid factor to obtain
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from which it is evident, that if z
z

z
„

= 1, then “ = ±1 independently of k and k
c

—
the so-called balanced hybrid condition. This is also true if z

„

= 0 and z
z

approaches
infinity, which is the case with a corrugated surface at resonance.

Let “ = +1 in Equations (B.32), and at the same time let the phase constant,
—, equal the free space wavenumber, k. Then E

fl

and E
„

will have the same fl
dependence, which we can denote
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The H-field components also have this fl dependence, apart from a factor free space
admittance, i.e.

E
fl

= F (fl) cos
sin m„ (B.39a)

E
„

= ûF (fl) sin
cos m„ (B.39b)

H
fl

= ±Y
0

F (fl) sin
cos m„ (B.39c)

H
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= Y
0

F (fl) cos
sin m„., (B.39d)

which means that the field will have the same taper in all directions, and for m = 1,
the field lines will be purely x- or y-directed:

E
t

= F (fl) x̂

ŷ

(B.40)

H
t

= ±Y
0

F (fl) ŷ

x̂

. (B.41)

This is the desirable property of the balanced HE
1

mode which is often sought in
corrugated horns. In radially corrugated horns, the phase constant, —, is not equal
to k, but very parallel field lines can still be achieved over most of the aperture. In
a hard horn or waveguide, — can be equal to k, and the field lines are in principle
totally linear.

The opposite case, namely “ = ≠1, is also called a balanced condition. However,
the EH modes in this case clearly do not exhibit the desirable property of the HE
modes.

B.2.2 Numerical Implementation
In order to generate dispersion plots, we can solve either (B.34) for k

c

or (B.35) for
k. Solving the quadratic equation for k is definitely easier. However, we do not have
control over which frequencies are covered in the resulting (k, k

c

) pairs. We can
only choose a range of k

c

and hope for the best. When solving the transcendental
Equation (B.34) instead, we have control over which k’s we choose. However, ro-
bustly finding the k

c

values which satisfy the equation — and thereby the boundary
conditions — is quite tricky, especially for certain impedance values.
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Solving a Quadratic Equation for k

We make a list of cuto� wavenumber values, k
c

. The list consists of values from
zero to the maximum desired k that we want to plot. Also purely imaginary values
of k

c

are included in the same interval. The imaginary values of k
c

correspond to
possible slow waves where the phase constant, — =


k2 ≠ k2

c

, is larger than k. For
each k

c

in the list, Equation (B.35) is solved for k. This results in zero, one, or two
real solutions. Only real k values larger than the corresponding k

c

value are usable,
or for imaginary k

c

, k values larger than zero. To illustrate this, a set of (k, k
c

)
pairs are plotted in Figure B.1(a), where only points above the black line are usable.
Figure B.1(b) shows the corresponding dispersion diagram.
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Figure B.1: Waveguide with wall impedances Z
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j.
(a): k values found from a list of k

c

values. Only points above the black
line are usable. (b): Dispersion plot from accepted (k, k

c

) pairs. Here
the black line is the light line.

Solving Transcendental Equation for k
c

In this method, we solve Equation (B.34) directly using a numerical zero finding
algorithm. The equation is solved for each k of interest, yielding a list of k

c

’s for which
the equation is satisfied, corresponding to supported modes at that frequency. In order
to find the zeros more robustly, zeros are first found in the analytical derivative of the
characteristic equation. The zeros of the original equation must lie between zeros of
the derivative. This helps for certain impedances where the characteristic equation
has minima very close to the axis, where there can be zero, one, or two solutions,
depending on whether it crosses the line. The dispersion characteristics of impedance
waveguides used examined in Chapter 6 are calculated by this method.

B.3 Circular Waveguides with PEC wall

The following are some formulas pertaining a standard circular waveguide with PEC
walls.

B.3.1 Fields in the Guide
As previously mentioned, the boundary conditions in a PEC waveguide can be sat-
isfied by purely TE and TM modes. The tangential E-field for modes in a circular
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PEC waveguide are given below. The fields are normalized such that they carry the
same power as in [80].
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The constants Á
m

take the values

Á
m

=
;

1, m = 0
2, m ”= 0 . (B.43)

while ‰
mn

is the nth non-vanishing root of the mth order Bessel function, J
m

(‰),
and equivalently for ‰Õ

mn

, but for the derivative of the Bessel function, J Õ
m

(‰).
For m > 0, the full expansion in (B.42) contains two variants of each TE

mn

and TM
mn

mode, corresponding to the top and bottom choices. For instance, the
fundamental TE

11

mode exists in both an x-polarized and an y-polarized version.
The modes corresponding to the top choice in (B.42) are denoted as the 1st set,
whereas the modes corresponding to the bottom choice are denoted the 2nd set.

The cuto� wavenumber of a circular waveguide mode is

k
c

= ‰

a
(B.44)

(B.45)
where ‰ is either ‰

mn

or ‰Õ
mn

mentioned above. The phase constant follows as in the
general waveguide case

— =


k2 ≠ k2

c

(B.46)
in which k is the free space wavenumber. The cuto� frequency, f

c

, is the frequency
below which — is imaginary and the amplitude of the wave decays exponentially, i.e.

f
c

= ck
c

2fi
. (B.47)

where c is the speed of light. The first fifteen modes sorted by ascending cuto�
wavenumber/frequency is listed in Table B.1. The first nine modes of the 1st and 2nd

set are plotted in Figures B.2 and B.3, respectively.

B.3.2 Orthogonality
Orthogonality and normality of the modal basis functions can be expressed as
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(B.48a)
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where S is the waveguide cross section and h are the corresponding modal H-fields
to the normalized E-fields.
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Figure B.2: The first 9 modes of the first set sorted by cuto� wavenum-
ber (see Table B.1).
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Figure B.3: The first 9 modes of the second set sorted by cuto�
wavenumber (see Table B.1).
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Mode k
c

k
c,min

TE
11

1.000 TE
12

2.896
TM

01

1.306 TM
02

2.998
TE

21

1.659 TM
31

3.465
TE

01

2.081 TE
51

3.485
TM

11

2.081 TE
22

3.642
TE

31

2.282 TE
02

3.810
TM

21

2.789 TM
12

3.810
TE

41

2.888

Table B.1: First 15 circular waveguide modes sorted by cuto�
wavenumber/frequency. The wave numbers are normalized with respect
to the smallest wavenumber, i.e. that of the fundamental mode.

B.3.3 Fields Radiated From Open Ended Waveguide

The fields radiated from a circular waveguide is calculated in [76] by analytically
integrating the electric field of each mode in the waveguide aperture. The electric
aperture field of a mode is assumed to be a sum of the incident wave electric field
and a reflected part of the same mode:

E
t

= (1 + �)Ei

t

, (B.49)

where E
t

is the total tangential E-field and Ei

t

is that of the incident wave. The
resultant far-fields are reproduced here, but with two lines, corresponding to the two
degenerate versions of each mode, set 1 and set 2. Radiation from the TE modes
becomes
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The upper and lower choices correspond to the 1st and 2nd set, respectively, as in
Equation (B.42). And equivalently for TM modes:
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For the calculations performed during the optimization in Section 3.2, it is assumed
that there is no reflection at the waveguide aperture, namely

� = 0. (B.52)

It may be noted that the radiated fields from waveguide modes of the same m-
index and same set are not orthogonal as they are inside the waveguide. In practise,
this means that the total field must be renormalized every time we evaluate the
spillover e�ciency in Section 3.2.
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Abstract—The inherently high cross polarization of prime focus
offset reflector antennas can be compensated by launching higher
order modes in the feed horn. Traditionally, the bandwidth of
such systems is in the order of a few percent. We present
a novel design procedure where the entire matched feed and
reflector system can be efficiently optimized. This allows the
design parameters of the matched feed to be directly related
to the desired design goals in the secondary pattern over a
specified band. Using this procedure, we present a design of a
die-castable axially corrugated matched feed horn that provides
an XPD improvement better than 7 dB over a 12% bandwidth
for a reflector with an f/D of 0.5. An investigation of the mode
requirement for an arbitrary circular aperture feed is also
presented.

Index Terms—matched feed, reflector antenna, horn antenna,
optimization, antenna modelling.

I. INTRODUCTION

Offset parabolic reflector antennas suffer from high cross
polarization compared to their symmetric counterparts. On the
other hand, they are very attractive in terms of avoiding feed
and strut blockage. The cross polarization arises from tilting
the otherwise perfectly polarized feed antenna away from the
paraboloid apex. A solution to this was proposed by Rudge
and Adatia in 1975 [1]. The idea is to use a non-perfectly
polarized feed that has exactly the cross polarization that will
cancel the one introduced by the asymmetry of the antenna
system.

Rudge and Adatia examine the antenna in receiving mode
of a plane wave from boresight. The focal region field in
this situation was described some years earlier by Bem [2].
They find that this field can be approximately matched by the
addition of the TE

21

mode in a circular feed, the HE
21

in a
radially corrugated feed, or the TE

11

mode in a rectangular
feed. Their practical implementation is a Potter horn [3] with
a TE

21

mode launcher consisting of two pins inserted into the
waveguide. There are many variations in the literature with
pyramidal horns [4], corrugated horns [5], and feed arrays
[6]. Mode launchers are usually some variation of either a
pin/post in the waveguide or a slot/stub, but other concepts
like exciting the higher order mode in the outer region of a
coaxial horn [7] or a series of non-concentric irises [8] have
also been published.

The challenge for designing a matched feed system is the
bandwidth. The mode generation and mode propagation along
a waveguide are dispersive phenomena and thus, performance

of these feeds quickly deteriorate when the frequency moves
away from the design frequency. To improve this, the full
desired frequency band must be included in the design op-
timizations.

II. REQUIRED MODES FOR MATCHED CONDITION

As mentioned in the previous section, the fact that the
required extra circular waveguide mode is TE

21

, is usually
justified from the focal region fields when a plane wave is
incident on the reflector [1] (described in more detail in [9]).
The method gives a good indication of the solution to the
problem, but is not strictly rigorous. In principle, the procedure
should be repeated for all angles of incidence within the main
beam, and how should these different focal region fields be
combined when designing the feed? Also, the focal field will
have ringing effects due to the abrupt truncation of the reflector
aperture field which cannot be reproduced with the feed.

In this paper, we validate the use TE
21

for matched feeds by
a more rigorous procedure. We let a circular aperture with a
combination of waveguide modes illuminate the offset reflec-
tor. The mode coefficients, aperture size, and aperture pointing
is then optimized to yield a satisfactory field distribution in the
reflector aperture. Given that the definition of a satisfactory
aperture field is judiciously chosen, this method will yield a
good overall antenna. The figure of merit is chosen as

F = ⌘
A

⌘
s

� K
cr

E
cr

, (1)

where ⌘
A

and ⌘
s

are the aperture and spillover efficiencies,
respectively. K

cr

is a constant weighing the importance of the
cross-polar aperture error, E

cr

, defined as

E
cr

=

RR
A

|E
cr

|2 dA
RR

A

(|E
co

|2 + |E
cr

|2)dA
, (2)

with A being the projected aperture of the reflector. Maxi-
mizing the aperture and spillover efficiencies results in high
gain, and minimising E

cr

will enforce uniform polarization in
the aperture and thus low cross polarization in the far-field.
For a good antenna, a compromise between these goals must
be made. Here, we maximize F for a chosen K

cr

= 10,
which is found experimentally to be a good compromise.
The parameters to the optimization are complex excitation
coefficients to a spectrum of radiating waveguide modes, as
well as the aperture radius and tilt angle. The radiated field
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from a given mode is computed using numerically power
normalized formulas from [10].

We let the antenna be offset in the vertical direction.
Fig. 1 shows the optimized mode amplitudes as a function
of f/D for the two polarizations. Superscripts denote the
two degenerate modes for an m, n pair, i.e. TE2

11

is a 90�

rotated version of TE1

11

and TE2

21

is a 45� rotated version of
TE1

21

. The regular co-polar part of the feed signal is seen as a
combination of the fundamental TE

11

mode and the TM
11

mode as in the Potter horn. The required cross-polar part
can be obtained by inclusion of TE

21

, but can be improved
by also including TM

01

or TE
01

for vertical and horizontal
polarization, respectively. This fact is most often neglected. In
fact, the TE

21

mode can be left out, and TE
01

and TM
01

used
instead. However, good results can also be obtained without
the m = 0 modes, but more TE

21

is then needed. In the
following we shall focus on designing a matched feed based
on TE

21

generation, but a future investigation may show that
feeds with TM

01

and TE
01

are just as good or better.
The drawback of the mode optimization technique is that it

is hard to control where the optimization finds a maximum,
and the maximum may not be the global maximum. For this
reason, the curves in Fig. 1 are not smooth. However, for
all f/D values, the plotted mode combination provides a
satisfactory reflector aperture distribution with nearly parallel
field lines.

III. REFLECTOR-FEED OPTIMIZATION

The GRASP software tool [11] offers highly accurate and
efficient Physical Optics (PO) as well as Method of Moments
(MoM) implementations. The latter is combined with the
former in a domain decomposition technique [12] to jointly
optimize feed-reflector systems. The interior of the feed itself
can be split up into several devices. Generalized scattering
matrices are computed for the waveguide ports of each device.
Devices can then be cascaded to obtain a combined scattering
matrix of the entire feed. Scattering matrices are computed
using either 3D MoM, Body of Revolution (BoR) MoM, or
Mode Matching techniques. The analysis method does not
have to be the same for the different devices.

For radiation analysis, the interior scattering matrices of
the horn are coupled to the exterior geometry using MoM.
Rigorous coupling to the reflector is achieved through either
PO or MoM/MLFMM. The final cascaded system can be used
to calculate the field at any point given an arbitrary waveguide
excitation.

When changing one variable of the antenna system, only
the scattering matrices dependent on this variable need to
be recomputed before cascading to obtain the entire antenna
scattering matrix. This is very useful for optimization purposes
and means that intermediary optimisation goals, like phase
edge taper and beam width of the feed can be skipped, and
the antenna system can be directly optimized based on the final
far-field goals. By avoiding these indirect quantities, a better
compromised design can be found over a larger bandwidth.
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Fig. 1. Optimized mode content as a function of f/D. Superscripts enumerate
the two degenerate field solutions for each mode type.

These properties have been used in the matched feed design
described in the following section.

IV. AXIALLY CORRUGATED MATCHED FEED

Using the general mode guidelines of Section II and the tool
described in Section III, a matched feed has been designed.
The design is based on the axially corrugated horn. This feed
type can be optimized to have good cross-polar performance
over a reasonable bandwidth, and is much simpler to fabricate
than the radially corrugated horn, as well as being shorter
and lighter. The fact that the horn is short is also a desirable
property when it comes to matched feeds or multimode
feeds in general, because different modes have different phase
velocities in the waveguide. The phase velocity of each mode
is dependent on frequency and thus, the longer a waveguide or
horn, the more sensitive the phase relationship between modes
is to frequency.

The goal is to make a feed which reduces cross polarization
for both linear polarizations in frequency band 27.5 GHz to
31 GHz. This constitutes a relative bandwidth of 12 % which
is considerable in the context of matched feeds. The feed will
illuminate an f = 0.25 m parabolic reflector with a D =
0.5 m circular aperture diameter and an offset clearance of
D0 = 0.05 m.

The design will be carried out in the following four steps:
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Fig. 2. Axially corrugated horn with modifications for matching. Radius of
input waveguide is 3.5mm and aperture radius is 12.3mm.

1) A standard axially corrugated horn is optimized in
CHAMP [13] to illuminate the given reflector with low
feed cross polarization over the band.

2) The feed is imported into GRASP. Mode converting ele-
ments are added and scattering parameters are optimized
over the band to approximately generate the amount of
TE

21

given in Fig. 1.
3) Mode converting elements are optimized, minimising the

far-field maximum cross-polar level, while keeping the
directivity intact.

4) All horn parameters are optimized.

A. Mode Conversion
In order to transfer some energy into the TE

21

mode, a
part of the geometry must be rotationally asymmetric. We
have chosen to make asymmetries that preserve the ability to
die-cast the horn. The chosen artefacts are cutouts, or chips,
in the corrugation ridges as shown in Fig. 2. The innermost
corrugation of the depicted horn has zero slot width/depth and
thus collapses to a step. Likewise, the chips can be viewed as
slots.

The middle chip or slot in each corrugation generates
the proper TE

21

from the horizontally polarized fundamental
mode and the two slots on either side generate TE

21

for the
vertically polarized fundamental mode.

The principle of the horn and mode launcher is very similar
to that of a Eutelsat patent [14].

B. Results
The cross-polar level for both linear polarizations is shown

in Fig. 3 over the band. A cross-polar reduction better than
7 dB is achieved over the 12 % frequency bandwidth. A
graphical representation of the feed and reflector is shown in
Fig. 4. Pattern cuts for both polarizations at one frequency are
shown in Fig. 5. The cuts are in the horizontal plane where the
cross-polar level is largest in this case (but not necessarily in
general). There are still many variations to the mode launcher
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Fig. 3. Cross-polar discrimination (referenced to peak directivity) of the
matched feed reflector system compared to unmatched as a function of
frequency.

that one might try in order to get a larger improvement and/or
larger bandwidth.

V. CONCLUSION

An alternative investigation of the waveguide modes re-
quired for matched feed operation has been presented. It is
confirmed that the addition of the correct TE

21

mode to an
otherwise low cross polarization feed can provide the required
compensation. However, it is also shown that TE

01

and TM
01

can be used alone or in conjunction with TE
21

.
A versatile, efficient, and accurate design tool for combined

reflector and feed optimization has been presented. This allows
generalized scattering matrices computed with BoR-MoM, 3D
MoM, or Mode matching to be accurately coupled to a PO or
MoM/MLFMM solution of the reflector setup.

Finally, the tool has been used to design a matched feed
based on an axially corrugated horn. The feed is modified by
putting chips/slots in the corrugations of the horn. An XPD
improvement better than 7 dB is achieved over the 12 % design
frequency band.
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Abstract—Matched feed horns aim to cancel cross polarization
generated in offset reflector systems. An analytical method for
predicting the mode spectrum generated by inclusions in such
horns, e.g. stubs and pins, is presented. The theory is based
on the reciprocity theorem with the inclusions represented by
current sources. The model is supported by Method of Moments
calculations in GRASP and very good agreement is seen. The
model gives rise to many interesting observations and ideas for
new or improved mode launchers for matched feeds.

I. INTRODUCTION

Mode launchers are used in matched feeds for generating
higher-order modes which create cross polarization cancelling
that inherent to an offset reflector system. The invention
was made by Rudge and Adatia [1] and has since received
considerable attention in the literature (see e.g. [2], [3], [4]).

The mode launcher for matched feeds usually takes the form
of pins attached to the wall of the waveguide or stubs/slots
likewise along the wall. In circular symmetric horns, the mode
launcher must exhibit non-circular symmetric geometry in
order to excite the desired modes. Despite the mode launcher
being a crucial part of the matched feed, there is very little
literature explaining it’s basic operation. Usually, the geometry
of the mode launcher and the position of the inclusions are
taken for granted and the motivation for the design is left out.

The exception is an analysis of radial pins using a Method
of Moments approach with waveguide Green’s functions [5].
In this paper, we develop a related, but simpler method for
describing the operation of mode launchers. In essence, slots
or stubs are modelled as magnetic current elements and pins
are modelled as electric current elements. Using the reciprocity
theorem and the orthogonality of the waveguide modes, it is
possible to derive which modes are excited as well as the
amplitude and phase relationships between them.

II. MODEL

Consider a waveguide with a source region containing
electric and magnetic currents, J and M. We do not assume
a specific waveguide shape, only that we know an orthogonal
eigenmode expansion of the fields. The fields from the current
distribution can be found with the Green’s functions associated
with the waveguide shape, but since we are, in fact, not
interested in the fields, we shall take the approach of [6,

Sec. 4.10]. This method involves expanding the E- and H
fields generated by the currents in waveguide eigenmodes
and then successively using the reciprocity theorem with each
mode of the expansion as the secondary field. Using field
expansions as defined in [7] and including magnetic currents
in the derivation, we arrive at the following expressions for
mode coefficients generated by currents J and M
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are mode coefficients of the i-th gener-
ated mode travelling in the positive and negative z-direction,
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are unity excited E- and H-fields of
the i-th mode travelling in the positive (+) and negative (�)
z-direction. Z

i

is the wave impedance of the i-th mode. Thus,
the excitation coefficient of a specific mode traveling in one
direction can be found simply by projecting the current onto
the field of the same mode travelling in the opposite direction.

The second part of the model is the excitation of said cur-
rents which is dependent on the incident mode. The current on
the pin or in the stub aperture is proportional to the projection
of the incident mode fields onto the current orientation at the
current position:

J � (E
inc

· ĉ)ĉ (2)
M � (H

inc

· ĉ)ĉ, (3)

where ĉ is a unit vector in the direction of the current (e.g.
the orientation of the pin). This is an accurate model for
electrically small inclusions.

III. APPLICATION

Using the above model we examine a longitudinal stub on
a circular waveguide of radius a = 6.3 mm at 30 GHz. The
waveguide is 20 mm long and the stub is located in the middle,
as seen in Fig. 1. We model the stub as a single infinitesimal
magnetic current filament located at the stub aperture, oriented
in the z-direction.

We consider the two orthogonal fundamental modes as
incident, namely TE1

11

(x-polarized) and TE2

11

(y-polarized).
The �-position of the stub is varied. An accurate Method
of Moments (MoM) simulation of the waveguide device in
GRASP [8] serves to validate the method. Fig. 2 shows the
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results from the model (solid line) and the MoM simulation
(stars). Since the model does not predict the absolute excitation
of the currents, the model results are scaled by a single
complex constant. The excitation relationship between the
modes is predicted by the simple model and is in very good
agreement with the simulated results as can be seen in the
figure.

Note that the excited modes also have two orthogonal
versions (except for modes with azimuthal index m = 0). For
a traditional matched feed with the reflector offset in the yz-
plane, two TE

21

modes are needed, one for each polarization:
TE2

21

is needed for TE1

11

operation (x-pol) and TE1

21

is needed
for TE2

11

operation (y-pol) [9]. Thus, we want the purple curve
in the top plot of Fig. 2 and the red curve in the bottom plot.
It is easily deducible from the plots that this can be achieved
by a stub at 90� and one at 35�. It is also straight forward
to see (when looking at the phase plots) that placing an extra
stub at 145� will cancel the unwanted TE1

21

contribution for
x-pol (top plot), but add constructively for y-pol (bottom plot).
However, these two stubs will deduct from the desired TE2

21

generation for x-pol. We can move them to 45� and 135�

and avoid this effect or move them still further to 50� and
130� which, assuming identical stubs, is the exact point that
will ensure equal generation of TE2

21

for x-pol and TE1

21

for
y-pol.

Many other observations can be made by examining these
kinds of plots. The model is approximate, but gives valuable
insight into the workings of existing mode launchers and can
provide ideas for improved mode launcher designs. The model
can also enter into more complex optimization procedures, as
it is extremely fast to evaluate. Similar simulations made with
radial pins modelled as ⇢-directed electric currents are omitted
here due to shortage of space.

Fig. 1. MoM mesh of the mode launcher consisting of a longitudinal stub
on a circular waveguide. In this picture the azimuthal position of the stub is
� = 45�.

IV. CONCLUSION

A new model describing mode launcher operation for
matched feeds is presented. It gives simple insight into pre-
viously presented designs and can form the basis of new
and improved designs. An example with a longitudinal stub
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Fig. 2. Modes generated by longitudinal stub versus stub azimuthal position
for x-polarized (top) and y-polarized (bottom) TE

11

incidence. Solid lines
are calculations from the simple model and the stars are full wave MoM
simulations from GRASP.

inclusion in a circular waveguide shows excellent agreement
with full-wave simulations.
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Abstract—Waveguides with anisotropic surface impedance
boundaries have been investigated for the purpose of matched
feeds for offset reflectors. Matched feeds employ higher order
waveguide modes to cancel out cross polarization introduced by
the offset geometry. Since the higher order modes propagate
at different speeds than the fundamental mode in conventional
waveguides, it is challenging to meet phase relationship re-
quirements over a large band. We have found that traditional
corrugated waveguides are poorly suited for matched feed appli-
cations. However, other surfaces that satisfy the balanced hybrid
condition, but have a small capacitive longitudinal reactance
and large inductive azimuthal reactance show very promising
properties: In a large band, HE

11

and HE
21

have similar
propagation characteristics.

Index Terms—metasurface, matched feed, offset reflector an-
tenna.

I. INTRODUCTION

Prime focus offset reflector antennas have many advan-
tages, but suffer from high cross polarization [1]. It is a
well known trade-off that a more compact system results in
higher cross polarization. By using Bem’s [2] analysis of the
focal region field, Rudge and Adatia [3] proposed that the
cross polarization be compensated by additional waveguide
modes in the feed horn. For smooth walled circular horns, the
TE

21

mode can compensate cross polarization if excited in
phase quadrature with the fundamental mode, TE

11

, though
other modes can also be used [4]. For corrugated horns, the
corresponding compensating mode is HE

21

.
The corrugated horn represents a special case of an

anisotropic impedance boundary waveguide. Here we shall
investigate the propagation of higher order hybrid modes in
more general waveguides with anisotropic impedance walls.
Such surfaces may be implemented by periodic structures on
the horn/waveguide wall, i.e. metasurfaces.

Wu et al. and Scarborough et al. have successfully demon-
strated horns with metasurface walls [5], [6], [7], [8] which
exhibit very good performance over a wide band. However,
their focus was not matched feeds, but a good co-polarized
feed and thus did need analysis of modes with higher order
azimuthal index.

By considering dispersion characteristics of the hybrid
modes HE

11

and HE
21

in circular cylindrical waveguides
with anisotropic boundary conditions, we shall investigate
if there are metasurface waveguides suitable for matched
feed applications. First, a brief theory of modal solutions in

impedance waveguides will be given, following the approach
of e.g. [9] and [10].

II. THEORY

Consider a cylindrical waveguide with circular cross-section
which extends along z. We assume solutions which are trav-
elling waves in the positive z-direction with phase constant �,
i.e. the field variation along z is e�j�z , given a harmonic time
factor of ej!t. The longitudinal (z) components of the fields
then satisfy the scalar Helmholtz equation. In a cylindrical
coordinate system with its z-axis along the center of the
waveguide, the longitudinal field components have solutions
of the form

E
z

(⇢, �, z) = E
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J
m

(k
c
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m� e�j�z (1a)
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sin
cos

m� e�j�z, (1b)

from which it follows that the so-called hybrid factor [9] is

� = Z
0

H
z

(⇢, �, z)

E
z

(⇢, � � ⇡

2m

, z)
, (2)

which measures the ratio of longitudinal E- and H-fields for a
solution. Z

0

is the free space impedance. The top and bottom
choices of cos, sin, +, and � correspond to two orthogonal
solutions. The hybrid factor is zero and infinite for pure TM
and TE modes, respectively. Any other value of � is a hybrid
mode: If the hybrid factor is positive, we denote the solution
an HE hybrid mode, and if negative, an EH hybrid mode [9].

Given the simple z-variation of the field, the longitudinal
components sufficiently characterize the field and the trans-
verse components can be found from these:
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We now impose boundary conditions in the form of nor-
malized surface impedances at the wall of the waveguide

z
z

= � E
z

Z
0

H
�

, z
�

=
E

�

Z
0

H
z

. (4)

The transverse field quantities are obtained from the longi-
tudinal ones and evaluated on the boundary. The boundary
conditions are then manipulated to obtain an equation which
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links the wavenumber, k, to the transverse wavenumber k
c

—
the characteristic equation:
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(5)

The characteristic equation is solved numerically for each k.
For a given k, there may be several k

c

which satisfy the
equation, corresponding to different modal solutions.

III. DISPERSION ANALYSIS

Using the simple theory outlined in the previous section,
we can investigate the modal solution of waveguides with
different anisotropic wall impedances. A convenient way to
analyze the modes is by dispersion diagrams. They provide
a relation between the electrical radius of the waveguide (or
frequency) and the phase constant of each mode. The phase
constant is found from k and k

c

as

� =
p

k2 � k2

c

. (6)

For a waveguide with PEC walls, the transverse wavenumber,
k

c

, is independent of k — this is not generally true for
impedance surface waveguides.

For the purposes of this analysis, we shall concentrate on
impedances which satisfy the balanced hybrid condition and
thus support balanced hybrid modes. These are modes for
which |�| = 1. The balanced HE modes are desirable, as they
approach totally parallel field lines when k and � are close.
It can be shown that the balanced hybrid condition is fulfilled
when

z
�

=
1

z
z

or x
�

= � 1

x
z

. (7)

where x
z

and x
�

are normalized reactances, i.e. for lossless
surfaces z

z

= jx
z

and z
�

= jx
�

. Under the balanced
condition balanced EH modes are also present (� = �1) in
addition to the HE modes. These are usually not desirable and
one would want to avoid exciting them.

In a classical matched feed design, the higher order mode
is excited at the beginning of the horn and then propagates
along with the primary mode in the rest of the horn. The phase
relationship between the modes at the aperture of the horn is
of vital importance. Thus, we want the phase constants of the
two modes to have the same difference over the frequency
band of interest, thereby making the phase difference at the
aperture constant. This is impossible for smooth walled horns
with the TE

21

compensating mode.
Additionally, if the compensating mode is excited along a

distributed section of the impedance waveguide, we know from
directional coupler theory [11], that the two modes must have
not only a constant difference in phase constant, but the same
phase constant.

A. Soft surface
Fig. 1 shows the dispersion diagram of a waveguide with

infinite longitudinal and zero azimuthal impedance — cor-
responding to a soft surface, e.g. a transversely corrugated
surface at resonance. This surface satisfies the hybrid condition
with both sides of Eq. (7) being zero. In a real corrugated
waveguide, the surface impedance would change with fre-
quency, resulting in different dispersion characteristics, but
Fig. 1 shows results qualitatively similar to those at the
aperture section of a corrugated horn. Evidently, the HE

11

and HE
21

modes have different dispersion characteristics. The
two modes have varying difference in phase constant with
frequency. Consequently, if they are allowed to propagate
together for a length of waveguide, their mutual phase differ-
ence at the end of the section will change with frequency —
which is exactly what should be avoided. This indicates that
traditional corrugated horns have no advantage over smooth
horns in the sense of matched feeds.
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Fig. 1. Dispersion diagram for a circular waveguide with infinite longitudinal
impedance, x

z

= 1 and zero azimuthal, x

�

= 0. This corresponds to a
corrugated surface where the corrugations are �/4 deep. Blue curves represent
m = 1 azimuthal variation and orange curves represent m = 2 variation. Full
lines are HE modes and dotted lines are EH modes.

B. Small Capacitive Longitudinal Impedance
It turns out that impedance pairs where the longitudinal

reactance, x
z

, is negative (capacitive) and small, are more
interesting for our purposes. We still require the balanced
hybrid condition, Eq. (7), to be met. Fig. 2 shows examples of
surfaces in this range with x

z

equal to �1, �0.5, and �0.1,
respectively. For x

z

= �1, the HE
11

and HE
21

modes are
much closer than in the ”corrugated” case of Fig. 1, and also
have a more constant difference. Decreasing negative values
of x

z

moves the two phase constants even closer, and closer
to that of free space. A surface of this type would be highly
desirable for matched feed applications

IV. IMPLEMENTATION

The surface impedances in the previous section are ideal-
ized. An optimized surface for the matched feed purposes of
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Fig. 2. Dispersion diagrams for a circular waveguide with three sets of surface
reactances fulfilling the balanced hybrid condition: x

z

x

�

= �1. Blue curves
represent m = 1 azimuthal variation and orange curves represent m = 2
variation. Full lines are HE modes and dotted lines are EH modes.

this paper, has not yet been found. However, looking in the
literature, it does seem feasible. The horns designed by Wu et
al. and Scarborough et al. [5], [6], [7], [8], feature impedances
which are balanced and have a normalized longitudinal reac-
tance of around x

z

= �1. Again, their goal for optimization
is not matched feeds, but the resulting surface happens to be

promising for matched feed applications. The same is true
for the surface designed in [12]. The surface designs might
be even better suited if an optimization goal was added to
possible make |x

z

| smaller.

V. CONCLUSION

We have made a study of circular cylindrical waveguides
with anisotropic impedance walls for the possible application
to offset reflector matched feed horns. The suitability of
such waveguides relies on the dispersion characteristics of the
primary HE

11

mode and the HE
21

mode used to compensate
cross polarization. It is desirable that the phase constant of the
two modes are close, or at least that the difference in phase
constant does not change with frequency.

We can conclude that corrugated waveguides are unsuited
to meet these requirements, but other balanced impedance
surfaces are well suited. These surfaces are characterized by
a capacitive (negative) reactance in the longitudinal direc-
tion and an inductive (positive) reactance in the azimuthal
direction. Surfaces like this are shown in the literature to be
realizable, and thus provide a promising platform for novel
matched feed designs.
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Matched-Feed Antennas
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Abstract—A novel type of multihole directional coupler is
presented as well as a design method involving novel procedures.
The device couples two orthogonal TE11 modes in a circular
waveguide into two orthogonal TE21 modes with specified ex-
citations in a surrounding coaxial waveguide, which has the
circular waveguide as inner conductor. A simple, novel analytical
procedure is used to determine azimuthal hole positions, such
that each of the input modes couples to only the desired coaxial
TE21 mode. The method is applied to a specific coupler which is
designed to couple �14 dB to both higher-order coaxial modes
in the band from 10GHz to 14GHz. The suppression of
undesired modes is generally better than 40 dB. The coupler
is intended for broadband, dual-polarized matched feeds, which
are able to compensate the intrinsically high cross polarization
of offset single reflector antenna systems.

Index Terms—Directional Coupler, Reflector antenna feeds,
Coaxial aperture antennas, Cross polarization

I. INTRODUCTION

Parabolic reflectors are the preferred choice for high gain
antenna systems. Often, the reflector is chosen to be offset
from the feed or subreflector in order to eliminate blockage.
A drawback of the offset system is that the asymmetry of
the configuration introduces high cross polarization. For dual
reflector systems, this can be compensated by applying the
Mizuguchi condition [1]. For a single reflector system, an
alternative solution was proposed by Rudge and Adatia in
1975 [2]. It involves letting cross polarization from the feed
antenna compensate the cross polarization introduced by the
offset geometry. This is achieved by generating higher-order
modes in a feed horn antenna that have specific amplitude and
phase relationships with the fundamental mode. Such a feed is
often called a Matched Feed. For a circular horn, the proposed
higher-order mode was TE

21

in two orthogonal rotations for
two operating polarizations.

Matched feeds have received considerable attention in recent
years. Feed designs with circular [3]–[6], rectangular [7], [8],
corrugated [9]–[11], and other geometries [12], [13] have
been presented. The primary challenge of the matched-feed
technique is to achieve a practically sufficient bandwidth for

O. Breinbjerg is with the Department of Electrical Engineering, Electro-
magnetic Systems, Technical University of Denmark, DK-2800 Kgs. Lyngby,
Denmark. (email: ob@elektro.dtu.dk)
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Fig. 1. Hole distribution in the coupler. The outer conductor of the coaxial
part has been made transparent such that the holes are visible. The square
hole sizes are from either end: 2.86, 1.77, 2.79, 2.74, 2.01, 3.09, 3.14, 3.16,
3.30, 3.33, and 3.27mm.

dual polarization applications, which is essential for the use of
this technology in communication applications. This difficulty
stems from the fact that the fundamental and higher-order
modes have different cutoff frequencies, resulting in phase
dispersion. The bandwidth can be defined as the frequency
range within which the peak cross polarization is reduced by a
certain amount, e.g. by 10 dB relative to the case with a purely
co-polarized feed. Watson et al. [14] were first to introduce this
bandwidth measure, achieving 4 % 10 dB-bandwidth for both
polarizations. By using an optimization procedure and trading
maximum reduction for more bandwidth, the authors achieved
a 7 dB reduction over a 12 % bandwidth for both polarizations
[15]. Using a novel mode launching concept, Dey et al. [16]
achieved a 10 dB reduction over a 10 % bandwidth for a single
polarization.

A way to mitigate the phase dispersion problem is to
somehow use higher-order modes that have the same or nearly
the same cutoff frequency as the fundamental mode. This is
not possible for conventional waveguide geometries, except if
the waveguide walls are anisotropic impedance surfaces [17].
Jana and Bhattacharjee [13] presented an optimized waveguide
cross section which brings the cutoffs closer together. Pour
and Shafai [12] proposed coupling the higher-order modes to
a coaxial waveguide surrounding the primary one. The higher-
order modes are then radiated directly from the coaxial guide
as in [18]. It turns out that the dimensions can be engineered
such that the cutoff of the TE

21

mode in the coaxial waveguide
is close to that of the TE

11

mode in the circular waveguide.
In [12] the bandwidth is limited because of the resonance of
a single coupling hole and the design is single polarized.

107



2 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

The present work is based on the concept in [12], but
is extended to a multi-hole design in order to support dual
polarizations and avoid resonances of individual holes. The
device is designed as a distributed directional waveguide
coupler, which has not previously been done for matched-
feed mode launchers. The presented design method concerns
the mode coupler itself, not the full antenna. The theoretical
basis of coupling between waveguides through small holes was
laid by Bethe [19] in 1944. Later, Miller [20] described the
theory of distributed couplers with tapered coupling functions
to enhance directivity and discrimination of undesired modes.
This theory was utilized in [21], [22] to create mode selective
directional couplers, coupling specific higher-order modes
from a circular waveguide into rectangular ones. This work
follows the same methodology, but is extended to account
for unequal cutoff of input and output modes, and for the
fact that the two output modes are not isolated in rectangular
waveguides, but must coexist in the same coaxial waveguide.
The latter challenge is overcome by a simple analytical method
for determining an azimuthal hole distribution (in addition
to the longitudinal one) which enables coupling from two
orthogonal input modes to two orthogonal output modes,
without cross coupling the wrong modes. To the authors’
knowledge, this type of directional coupler and elements of the
design method are not previously published in the literature.

The paper is organized as follows: In Section II, we shall
briefly rederive the loose coupling theory of Miller [20]
followed by determination of optimal coupling coefficients in
Section III. Then we will address the optimal selection of
the azimuthal distribution of coupling holes in Section IV.
Then, by simulation experiments, Section V will cover optimal
hole shape and simple, but effective mapping from coupling
coefficients to hole sizes. Finally, the resulting design will be
analyzed by full-wave simulation in Section VI.

II. LOOSE COUPLING THEORY

Loose coupling theory, as opposed to tight coupling theory,
assumes that the wave in the driven line is unpertubed by the
coupling [20]. For matched feeds, we are interested in coupling
only a small amount of the power to the coaxial waveguide,
and a tight coupling analysis can thus be omitted. The theory is
quite intuitive and can be written up by inspection. For the use
in subsequent sections, we briefly rederive loose coupling for
couplers with discrete coupling points. Note that the definitions
differ slightly from [20].

Consider a wave incident on a transmission line, the input
line. The wave is coupled to another line, the output line,
at discrete coupling points over a section of length L, see
Fig. 2. The phase constant in the input line is �

in

and the
phase constant in the output line is �

out

. If the lines are modes
in smooth walled waveguides, the phase constant � of each
line is found from the cutoff frequency as

� =
2⇡

c

p
f2 � f2

c

, (1)

in which c is the speed of light, f is the frequency, and f
c

is the cutoff frequency. At each coupling point, the complex
coupling coefficient, a

m

, determines the amplitude and phase

of the coupled wave relative to the input wave at the coupling
location. The input and output line can represent modes in
different waveguides or two modes in the same waveguide.

a1

z=0 z=L

input line

output line

a2 a3 ... am ... aM-1 aM

βin

βout

zm L-zm

Fig. 2. Loose coupling with discrete coupling points.

The contribution to the coupled wave in the forward direc-
tion at z = L from a single hole at z = z

m

, as depicted in
Fig. 2, can be expressed as

I
fm

= e�j�

in

zma
m

e�j�

out

(L�zm)

= a
m

e�j�

out

Le�jzm(�

in

��

out

), (2)

in which a timefactor of ej!t is used. Summing over all
coupling points yields the total forward coupled wave

I
f

= e�j�

out

L

MX

m=1

a
m

e�jzm(�in��

out

). (3)

Similarly, the contribution of the hole to the coupled wave in
the backward direction at z = 0 in the output line is

I
bm

= e�j�

in

zma
m

e�j�

out

zm

= a
m

e�jzm(�

in

+�

out

) (4)

and the total backward coupled wave thus

I
b

=
MX

m=1

a
m

e�jzm(�

in

+�

out

). (5)

Note that both the backward and forward coupled waves can
be evaluated from the function

F (✓) =
MX

m=1

a
m

e�jzm✓ (6)

where ✓ = �
in

� �
out

and ✓ = �
in

+ �
out

for forward and
backward coupling, respectively. It is seen that F (✓) is simply
a Fourier transform of the coupling distribution in the spectral
variable ✓, transforming the coupling coefficients to the ✓-
domain. If the coupling coefficients, a

m

, are symmetric and
all have the phase \a, it can be shown that the phase difference
between the output and input wave at the end of the coupler
is

�� = \a +
L

2
(�

in

� �
out

) . (7)

If the cutoffs of the input and desired coupled wave are
identical, the phase constants are the same, and ✓ for the
forward direction is zero for all frequencies. This condition
is sought in most traditional directional couplers. Then the
function F is designed to have the desired coupling value at
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✓ = 0 and a lower value in ✓-ranges of undesired modes,
backward and forward [20]. In our case, the cutoff of the
desired mode in the coaxial waveguide is close to that of
the input mode, but may not be exactly equal, so we cannot
assume that ✓ is zero.

III. DESIGN OF OPTIMAL DIRECTIONAL COUPLER

We will find the optimal coefficients, a
m

, given certain cri-
teria. The length of the coupler and number of coupling points
are first to be determined. This choice corresponds to choosing
filter length and sampling frequency of a digital Finite Impulse
Response (FIR) filter. Among other things, it determines the
steepness of the filter roll-off in the spectral domain. For the
present design there are additional considerations to take into
account: 1) we want the coupler as short as possible, 2) holes
must not overlap, and 3) coefficient values must be within a
feasible range. Balancing these goals, we arrive at a coupler
length of 80 mm with 21 holes. The length of the coupler is
measured from the center of the first hole to the center of
the last, and the remaining holes are equally distributed in
between.

We consider a circular waveguide surrounded by a coaxial
waveguide such that the circular waveguide constitutes the
inner conductor of the coaxial one. The principal dimensions
are listed in Table I. We are interested in coupling orthogonal
TE

11

modes in the circular guide to orthogonal TE
21

modes
in the coaxial guide as shown in Fig. 3. The outer radius is
chosen to approximately fulfill a

outer

= 1.173a
circ

� a
inner

,
which ensures that the cutoff of TE

21

in the coaxial guide is
nearly equal to the cutoff of TE

11

in the circular guide [23,
p. 70,77] (see Table I).

For the present design, the power of the desired coupled
mode compared to the input power should be �14 dB, which
is approximately the amount needed to compensate the cross
polarization in an offset reflector system with a focal length to
diameter ratio (f/D) of 0.6. The frequency band of operation
is 10 GHz to 14 GHz, i.e. a fractional bandwidth (FBW) of
33 %.

The ✓-values for the forward and backward coupling of
each mode can now be found from the above. Mapping the
operating frequency range to ✓-values results in Fig. 4. A range
of ✓-values are identified as undesired, which we will denote
the stopband in the ✓-domain. The passband given by the
green line is comparatively narrow owing to the closeness in
cutoff between input and desired coupled modes (see Table I).

TABLE I
PRINCIPAL DIMENSIONS AND CUTOFF FREQUENCIES OF THE COUPLER

acirc

ainner aouter

a

circ

10.0mm
a

inner

10.5mm
a

outer

12.5mm
Coupler length 80mm
No coupling points 21

Circ TE
11

cutoff 8.8GHz
Coax TE

21

cutoff 8.3GHz
Coax TE

31

cutoff 12.5GHz
Circ TE

21

cutoff 14.6GHz

(a) (b)
Fig. 3. Modal E-fields of the incident circular and desired coaxial modes
for the two polarizations: (a) TE1

11

to TE2

21

and (b) TE2

11

to TE1

21

. The
coupling holes are indicated in orange and their angular positions in degrees
are � = {30.9�

, 53.8�
, 76.7�

, 102.1�
, 125.0�

, 147.9�
, 187.6�

, 347.4�}.

The coupling function (6) is equivalent to the frequency
response of a FIR filter with filter coefficients a

m

. The coupler
can thus be designed as a FIR filter, defining stop- and
passbands in the spectral ✓-domain. Optimal coefficients can
be determined by standard techniques for FIR filter design.
The coefficients in Fig. 5 are found from the SciPy [24]
implementation of [25], which minimizes the maximum de-
viation from the desired coupling in each band. The coupling
holes will all be electrically small and reactive, yielding
coupling coefficients with constant phase, \a, close to 90�.
This phase relationship is desirable for matched feed design.
From Eq. (6), the resulting ✓-response is shown in Fig. 6. Pass-
and stopbands are indicated in green and red, respectively.

10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0

Frequency [GHz]
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�

Stopband

coaxTE
31

forward

coaxTE
31

backward

coaxTE
21

forward

coaxTE
21

backward

Fig. 4. ✓-values evaluated over the frequency band of interest in order to find
pass- and stop bands in the ✓-domain.

IV. AZIMUTHAL HOLE DISTRIBUTION

As explained in the previous section, the distribution of
holes in the longitudinal direction can suppress the generation
of undesired modes with different phase constants than the
desired, but it cannot distinguish modes with the same phase
constant. Since we require that each polarization of TE

11

cou-
ples only to the correct TE

21

mode, unwanted TE
21

couplings
must be suppressed in another way. We denote two orthogonal
versions of the circular modes with superscripts 1 and 2: TE1

11

should couple to TE2

21

, but not to TE1

21

and vice versa as
depicted in Fig. 3. The suppression is achieved by placing
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Fig. 5. Optimal coupling coefficients minimizing the maximum deviation
from the desired coupling in both bands, i.e. �14dB in the passband and
�1 dB in the stopband. All coefficients have the same phase.
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Fig. 6. ✓-response of the coupling coefficients. The theta ranges of desired
and undesired modes are indicated by passband and stopband, respectively.

several holes around the circumference at each coupling point
along z.

The coupling from one mode to another through a waveg-
uide wall can be modelled by representing the hole with
an electric dipole normal to the wall and a magnetic dipole
parallel to the wall [19]. The dipoles are excited proportional
to the respective input fields: normal E-field and tangential
H-field. The proportionality constants, the polarizabilities of
the hole, depend on the hole shape and size. The dipoles
radiate and excite modes in the output waveguide. The strength
of each excited mode is proportional to that mode’s field
projected onto the dipoles [26, Sec. 4.10].

From these considerations, we can determine the effect
of moving a coupling hole around the circumference of the
circular waveguide wall. For circular and coaxial waveguide
modes, the azimuthal (�-) variation of the fields is given by
sine and cosine functions of the � variable times the azimuthal
(m-) index of the modes. The �-variation of a mode coupling
is a product of the field variation for the input and output
mode. The resulting �-dependence of the desired and the most
critical undesired couplings are listed in Table II.

With this information, we can select a number of hole
positions, such that the combined contributions from all holes
will cancel out undesired couplings [27]. Additionally, the

TABLE II
SUMMARY OF DESIRED AND UNDESIRED MODE COUPLINGS

Coupling �-dependence

Desired
TE1

11

! TE2

21

cos � sin 2�

TE2

11

! TE1

21

sin � cos 2�

Undesired
TE1

11

! TE1

21

cos � cos 2�

TE2

11

! TE2

21

sin � sin 2�

TEx

11

! TEx

31

cos � cos 3�

cos � sin 3�

sin � sin 3�

sin � cos 3�

two desired couplings should be of approximately the same
strength and the hole positions must be separated a certain
distance such that they do not overlap for a certain hole size.

The process of choosing hole positions is automated with an
optimization procedure. A local minimax optimizer (fminimax
of Matlab) is used to minimize undesired couplings while
satisfying constraints. Since the objective functions are compu-
tationally very light, the global best solution is sought simply
by trying many starting guesses at random.

The resulting configuration is the 8 hole distribution in-
dicated with orange in Fig. 3. This configuration suppresses
undesired TE

21

couplings by approximately 30 dB compared
to desired ones. Undesired TE

31

couplings are suppressed by
22 dB, but these can be further suppressed by the arrangement
of holes in the longitudinal direction as described in Sec. III.
The coupler consists of 21 slices of equal thickness corre-
sponding to the 21 coupling points. Each coupling point, or
slice, will have 8 equally sized holes with the optimized �-
distribution, but the hole size will change from slice to slice
in correspondence with the coefficients in Fig. 5.

V. MAPPING COEFFICIENTS TO HOLE SIZES

The amount of coupling into each hole can be estimated
by Bethe theory [19] or by improved methods [28], [29].
However, we shall take a shortcut and use a simpler, but very
effective method. Since the coupling generally has a cubic
relationship with the size of the hole [19], we just make a
few simulation experiments with different hole sizes and fit a
cubic spline to the data. In this way, effects like wall thickness
and aperture shape are automatically taken into account. The
simulations are carried out with a higher-order method of
moments solver from TICRA [30]. Generalized scattering
parameters between four waveguide ports are extracted: one
circular and one coaxial at each end of the slice. The results
are in excellent agreement with another commercial tool [31]
(not shown here).

The holes are chosen to be square, in effect, there is a
contribution to the coupling from both a longitudinal and
an azimuthal equivalent magnetic dipole. This reduces the
frequency dependence of the isolated hole, since the longitu-
dinal coupling is inversely proportional to frequency and the
azimuthal coupling is proportional to frequency [32].
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Using the azimuthal hole distribution illustrated in Fig. 3,
we simulate a single slice of the waveguide structure. The
results are shown in Fig. 7. Six hole sizes are simulated and
cubic splines are fitted to the data. Note that as a consequence
of the optimized azimuthal hole distribution, the two desired
couplings are nearly equal and the undesired TE

21

couplings
are suppressed. The data shown in Fig. 7 is averaged over the
frequency range of interest: 10 GHz to 14 GHz.
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Fig. 7. Interpolation of the amount of desired coupling as a function of hole
size. Based on six experiments indicated by black markers. The data for each
hole size is averaged over a frequency range from 10GHz to 14GHz. This
data is used to map coupling coefficients to hole sizes. The undesired TE

21

couplings are also shown, the suppression is better than 30dB for the hole
sizes used.

Using the interpolating function, all the coefficients of Fig. 5
are mapped to hole sizes. A coupler device with the resulting
hole distribution is rendered in Fig. 1. In case there are any
negative coupling coefficients, these can be implemented by
negating the �-positions of the holes in the corresponding
slice. This results in coupling of the opposite sign of both
the desired coupling components (a consequence of the single
sine factor in these couplings, Table II).

VI. COUPLER PERFORMANCE

The performance of the coupler is evaluated by the same
computation method as the single slice. Again, a coaxial and
circular waveguide port is placed at each end of the coupler.
The coaxial port at the back of the coupler will be terminated
in a practical design, but is included in the simulation to ensure
that very little power is coupled in the backward direction.
As mentioned we are interested in having a constant coupling
from TE1

11

to TE2

21

and from TE2

11

to TE1

21

. All other possible
couplings are desired to be low.

Several couplings (scattering parameters) are plotted in
Fig. 8 as a function of frequency. The goal level of �14 dB for
the two desired couplings is indicated by a horizontal dashed
black line. The realized coupling for both polarizations are
within 2 dB of the desired over the entire band and within
0.5 dB of each other.

Undesired couplings are all the TE
21

couplings in the
backward direction, undesired TE

21

couplings in the forward
direction, and all TE

31

couplings (see Table II). The level of
the undesired couplings is below �40 dB in the design band
10 GHz to 14 GHz, except for one of the TE

31

couplings. This
coupling increases at higher frequencies to a level of about

�36 dB at 14 GHz, which is still sufficient suppression for our
application. All couplings to the backward port in the coaxial
waveguide are low, and we can thus justify that terminating it
will not affect performance. Also, the reflection at the input
circular waveguide is of general interest, and is better than
�35 dB in the design band for both polarizations.

The reason for the increased TE
31

coupling shown in green
in Fig. 8, can be explained by the ✓-domain (Figs. 6 and 4):
the ✓-values of the TE

31

couplings come close to the passband
at higher frequencies. From Fig. 6, it is evident that the filter
response only just drops off quickly enough from passband
to stopband. The filter design is based on phase constants
of modes in the simple, unperforated waveguides. The many
holes are likely to disturb the cutoff frequencies and phase
constants of the modes in both the circular and coaxial guide,
thus shifting the bands in the ✓-domain. This is most likely
the reason for slightly higher TE

31

coupling at the end of the
band.

The relative phase of desired modes to the input mode is
shown in the bottom part Fig. 8. The realized phase is close to
the expected result from Eq. (7), which is obtained assuming
\a = ±90�. Choosing different waveguide dimensions can
bring the expected — and realized — relative phases closer
to ±90�. However, lower values can be desirable to balance
the opposite effect, if a subsequent horn section is added to
the coupler.

The coupler presented here was designed with very little
computational effort, from filter theory and analytical hole
coupling theory. Only full wave simulation of a single slice
was used in the design to establish the mapping from co-
efficients to hole sizes. Nevertheless, the resulting coupler
performs well and as expected. Due to the nonresonant nature
of coupling holes, the design is insensitive to manufacturing
tolerances; this is supported by preliminary simulation exper-
iments (not shown here).

VII. CONCLUSION

A design method for a directional coupler coupling orthog-
onal TE

11

modes from a circular waveguide into orthogonal
TE

21

modes in a coaxial waveguide surrounding the circular
one, is presented. The method of mode selective directional
couplers needed to be extended to allow coupling of specific
degenerate modes into the same waveguide, where the coupled
modes do not have the exact same cutoff as the source modes.

Optimal finite impulse response filter (FIR) techniques
have been used in the determination of hole distribution in
the longitudinal direction. This allows for discrimination of
undesired modes which travel in the backward direction or
have a different cutoff than desired modes.

Undesired TE
21

modes which have the same cutoff as
desired modes, cannot be suppressed by directional coupler
theory. A novel method which optimizes the azimuthal distri-
bution of the holes ensures that only the correct TE

21

mode
from each TE

11

mode is coupled and that they both couple in
equal amount.

The method is applied to a specific design which exhibits
good performance over the band (33 % FBW). Only a single

111



6 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

�50

�40

�30

�20

�10

A
m

p
it

u
d
e

[d
B

] TE1

11

to coax-TE2

21

TE2

11

to coax-TE1

21

TE2

11

to coax-TE2

31

Reflection at input

Other couplings

9 10 11 12 13 14 15

Frequency [GHz]

�180

�90

0

90

180

R
el

at
iv

e
p
h
as

e
[d

eg
]

Equation (7)

Fig. 8. Coupling from the two input modes in the circular waveguide to several
modes in the coaxial guide. The two desired couplings are colored as well as
the most critical undesired coupling. In addition, the maximum reflection at
the input circular port is plotted in red. The Horizontal dashed line indicates
the desired coupling level �14dB. Vertical dashed lines delimit the frequency
range of interest. The phases of desired modes are plotted relative to the phase
of TE

11

propagation through the circular waveguide.

higher-order mode couples more than �40 dB at the higher
end of the band, but not to a critical degree. The two desired
couplings have the same strength to within 0.5 dB over the
entire band. The coupler is intended to be placed before a
matched-feed horn antenna, feeding an offset reflector. The
higher-order TE

21

modes will allow suppression of cross po-
larization over a wide bandwidth in dual polarized operation.
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